Skip to main content
Author(s):
William L. Baker
Year Published:

Cataloging Information

Topic(s):
Fire Effects
Wildlife
Sage-grouse

NRFSN number: 26485
Record updated:

The main population of ~5000 threatened Gunnison sage-grouse (GUSG; Centrocercus minimus) in Colorado depends on sagebrush plants that are killed by wildfires, with recovery taking decades, so frequent fire is a threat, but did it occur historically? Early land surveys showed that the historical (preindustrial) fire rotation (FR), the expected period to burn area equal to a focal land area, was 90–143 years in GUSG ranges, which is not classed as frequent fire (≤25 years). However, recent research, based on fire scars on trees at ten sites near sagebrush, suggested some frequent fire historically in the main population. That study was not spatial, essential to estimate FR, so spatial data were created in GIS with land-survey reconstructions, survey dates, fire-scar sites, mapped sagebrush, and Thiessen polygons around sites. The previous study assumed fires that burned 2+ sites likely burned across sagebrush. Historical FRs were calculated several ways over a common period. A recovery estimate of FR was 90–135 years, a land-survey estimate was 82–131 years, and three spatial scar-based estimates were 93–107 years, showing agreement. However, the comparison found that only 8.8% of the land-survey fire area was detected at fire-scar sites. Detailed analysis showed that 10 fire-scar sites were insufficient to detect historical fire sizes and distributions across the large 168,753 ha sagebrush area. Adequate fire reconstruction could require ~45–60 fire-scar sites, making it feasible to study only ~30,000 ha of sagebrush. Using the two remaining methods, which cross-validate, showed frequent fire did not occur historically in the study area, as historical FRs were 82–135 years.

Citation

Baker WL. 2024. Scaling Landscape Fire History: Wildfires Not Historically Frequent in the Main Population of Threatened Gunnison Sage-Grouse Fire 2024, 7(4), 120; https://doi.org/10.3390/fire7040120

Access this Document