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ABSTRACT

Modeling can play a critical role in assessing and mitigating risks posed by natural hazards. These modeling 
efforts generally aim to characterize the occurrence, intensity, and potential consequences of natural hazards. 
Uncertainties surrounding the modeling process can have important implications for the development, application, 
evaluation, and interpretation of models. In this chapter, we focus on the analysis of model‐based uncertainties 
faced in natural hazard modeling and decision support. Uncertainty analysis can help modelers and analysts 
select appropriate modeling techniques. Further, uncertainty analysis can ensure decision processes are informed 
and transparent, and can help decision makers define their confidence in model results and evaluate the utility 
of investing in reducing uncertainty, where feasible. We introduce a framework for identifying and classifying 
uncertainties, and then provide practical guidance for implementing that framework. We review terminology 
and offer examples of application to natural hazard modeling, culminating in an abbreviated illustration of 
uncertainty analysis in the context of wildfire and debris flow modeling. The objective of this brief  review is to 
help readers understand the basics of applied uncertainty theory and its relation to natural hazard modeling and 
risk assessment.

2.1. INTRODUCTION

Natural hazards can have devastating consequences 
including the loss of human life and significant socioeco-
nomic and ecological costs. Natural hazards may be iso-
lated events or they may be linked with cascading effects, 
for instance, debris flows after volcanic eruptions or wild-
fires. Although often destructive, these hazards are the 
result of  natural processes with a range of  potential 
environmental benefits as well (e.g., groundwater recharge 
after a flood). It is therefore important for society to be 

able to better understand, forecast, and balance the risks 
posed by natural hazards, in order to prepare for and 
mitigate those risks.

Broadly speaking, risk mitigation strategies can target 
either the natural hazard itself  or the potential conse-
quences. With respect to the former, reducing the like-
lihood or intensity of the hazard itself  is only a feasible 
option in select cases, as in the case of wildfires, through 
preventing human‐caused ignitions, manipulating fuel 
conditions, and increasing firefighting suppression 
capacity. With respect to the latter, reducing vulnerability 
is a more universally applicable mitigation strategy, which 
entails both reducing exposure through, for example, 
zoning to restrict development in hazard‐prone areas 
and reducing susceptibility to loss through construction 
practices.
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The implementation of actions to manage risks from 
natural hazards begins with a decision process. The deci-
sion process may be formal or informal, and can span a 
range of decision makers from regulatory agencies to 
individual homeowners. Modeling can play a critical role 
in informing these decisions.

Figure  2.1 illustrates a generalized risk management 
process, and highlights the role of risk modeling in 
informing decision processes. The decision process has 
four primary stages: (1) problem structuring, (2) problem 
analysis, (3) decision point, and (4) implementation and 
monitoring [Marcot et  al., 2012]. In the first stage, the 
problem context is framed, relevant natural hazards are 
identified, and objectives and evaluation criteria are 
defined. In the second stage, risk management options 
are defined and evaluated, key uncertainties are identified, 
and potential trade‐offs analyzed. In the third stage, a 
decision for a particular course of action is reached, and, 
in the last stage, the decision is implemented and monitoring 
actions may be undertaken.

We highlight the problem analysis stage because it 
entails the principal natural hazard and risk modeling 
components and provides the informational basis for 
evaluating consequences and assessing trade‐offs to sup-
port decisions. However, uncertainty arises in all stages 
of the risk management and modeling process and the 
presented tools are to a large extent also applicable across 
other stages.

The risk modeling process similarly has four primary 
stages: (1) problem structuring, (2) exposure analysis, 
(3)  effects analysis, and (4) risk characterization [U.S. 
Environmental Protection Agency, 1992; Thompson 
et al., 2015]. In the first stage, the modeling objectives, 
scope of  analysis, and assessment endpoints are identi-
fied, as are the salient characteristics of  the natural haz-
ards being analyzed. Exposure analysis, the second 

stage, examines the likelihood, intensity, and potential 
interaction of  natural hazards with values at risk. 
Effects analysis next examines potential consequences 
as a function of  exposure levels, often depicted with 
dose‐response curves. In the risk characterization stage, 
results are synthesized to provide useful information for 
the decision process. Implicit in the risk modeling 
 process depicted in Figure 2.1 are the steps of  collecting 
and processing data, developing the conceptual 
model(s), selecting and applying the model(s), and cali-
brating and validating results.

Natural hazard modeling efforts generally aim to char-
acterize the occurrence, intensity, and potential conse-
quences of natural hazards. The field is wide ranging and 
involves a multitude of disciplines including risk analysis, 
statistics, engineering, and the natural sciences. Part of 
the reason the field is so broad is that characteristics 
of natural hazards themselves are broad, in terms of the 
relevant spatial and temporal scales of analysis, the 
underlying natural and anthropogenic processes driving 
hazard dynamics, and the degree of control humans have 
over those processes. Key modeling questions often relate 
to the location, timing, duration, and magnitude of 
h azardous events, as well as their causal pathways, cas-
cading effects, and potential feedbacks on future hazard 
and risk. A key feature of natural hazard modeling is the 
reliance on probabilistic and integrated environmental 
modeling techniques.

Regardless of their scope and complexity, models are 
still fundamentally an abstraction of reality. This abstrac-
tion can have important implications for how models are 
developed, applied, evaluated, and interpreted. Principal 
among these concerns are uncertainties surrounding 
model inputs, the modeling process, and model outputs. 
Unaddressed or overlooked uncertainties can ultimately 
lead to ill‐informed and inefficient decisions, in the worst 
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Figure 2.1 The four primary stages of a structured decision‐making process and their relation to the four primary 
stages of a risk modeling process. Figure modified from Marcot et  al. [2012], Ascough II et  al. [2008], and 
US Environmental Protection Agency [1992].
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case leading to increased hazard and/or vulnerability. 
Resultantly, an essential component of effective hazard 
and risk management is the analysis of uncertainties.

As we will describe in this chapter, there are a number 
of  attributes with which uncertainty can be character-
ized. One important question is where uncertainties orig-
inate (i.e., from measurement error or knowledge gaps or 
modeling approximations or intrinsic system variability). 
A related question is whether the uncertainty is in some 
sense reducible through additional research and data col-
lection; intrinsic system variability is considered irreduc-
ible [Rougier et al., 2013]. Having a solid understanding 
of  model‐based uncertainties is important for a number 
of  reasons. First, decision makers are able to define their 
level of  confidence in model outputs and as a result deci-
sion processes are more informed and transparent. 
Second, decision makers can assess the degree to which 
uncertainty may affect choice of  the best course of  action 
and estimate the value of  additional information. Third, 
decision makers can evaluate options for reducing uncer-
tainty. Where the value of  additional information is high, 
and where this information can be obtained (i.e., the 
uncertainty is reducible), then investing in additional 
research and monitoring or adopting an adaptive man-
agement approach may be warranted [Thompson et al., 
2013]. In turn, knowledge gained from monitoring may 
be used to update and inform modeling efforts, or could 
result in a reframing of how the problem is understood 
and a change in management strategy. Of course, not all 
forms of uncertainty are reducible, and attempting to 
reduce all forms of uncertainty may be an inefficient use 
of  resources. It is therefore necessary to systematically 
assess model‐based uncertainties.

In this chapter, we review concepts related to the iden-
tification, classification, and evaluation of  uncertainties 
faced in natural hazard modeling and decision support. 
Our primary objectives are to introduce a formalized 
framework for analyzing uncertainties, and to provide 
practical guidance for implementing that framework. 
We introduce a typology to categorically describe 
sources of  uncertainty along three dimensions, present 
an “uncertainty matrix” as a graphical tool to illustrate 
the essential features of  the typology, and present a 
decision tree to facilitate proper application of  the 
uncertainty matrix. We hope this chapter helps readers 
not just understand but also see how to actually apply 
uncertainty theory. Throughout our chapter, we build 
from the broader l iterature of  environmental modeling 
and risk assessment, in particular from the work of 
Walker et al. [2003], Refsgaard et al. [2007], Ascough II 
et al. [2008], Maier et al. [2008], Kwakkel et al. [2010], 
Warmink et al. [2010], Skinner et al. [2014a], and Skinner 
et al. [2014b].

2.2. IDENTIFYING AND CLASSIFYING 
UNCERTAINTIES

Figure 2.2 provides a generalized overview of the steps of 
uncertainty analysis. The development and evaluation of 
modeling approaches is iterative in nature and premised on 
transparently identifying, classifying, and evaluating how 
uncertainties may influence model results and ultimately 
decision processes. Uncertainty analysis begins with the 
identification of potential sources of uncertainty. Having a 
clear, systematic, and consistent approach to identifying 
uncertainties can help modelers and analysts identify sali-
ent uncertainties. By identifying up front the sources of 
uncertainties faced, modelers can identify approaches and 
techniques that might be most suited to the problem at 
hand. In turn, model evaluation can help identify uncer-
tainties that may be introduced due to the structure and 
technical implementation of the particular model(s) cho-
sen. Later in this chapter, we will return to the selection of 
appropriate techniques to evaluate uncertainty.

The identification and classification of uncertainties is 
often driven by the experience and best judgment of 
modelers and analysts. An uncertainty typology can be a 
particularly useful tool to help identify, define, and com-
municate the important features of uncertainties faced 
within the specific modeling context. Typologies can help 
modelers and analysts better understand and differenti-
ate uncertainties faced in the modeling process, and do so 
in a systematic and consistent fashion. It is critical that 
typologies are complete and consistent to avoid genera-
tion of misleading hazard and risk assessments. Walker 
et al. [2003] classifies uncertainty along three dimensions: 
(1) the nature of  the uncertainty (i.e., the underlying cause 
of how the uncertainty came to exist); (2) the location of  

Identify

Classify

Evaluate

What are the sources of uncertainty?

What is their nature, location, and
level?

How might they affect model outputs?

Figure  2.2 Conceptual overview of a three‐step process for 
uncertainty analysis.
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uncertainty in the modeling or decision process; and 
(3) the level of  the uncertainty, along the spectrum from 
total determinism to total ignorance. It is important to 
note that there could be multiple classification schemas 
for each dimension [Skinner et al., 2014a], which may be 
more or less applicable depending upon the specific 
context.

To begin, we borrow from Ascough et al. [2008], who 
define four main natures of uncertainty: linguistic, 
knowledge, variability, and decision (Table 2.1). Linguistic 
uncertainty relates to ambiguity, vagueness, and contex-
tual dependency of terminology. In fact, the field of 
uncertainty analysis itself  has struggled with using a 
common lexicon for characterizing uncertainties across 
scientific disciplines [Romanowicz and Macdonald, 2005; 
Rauser and Geppert, Chapter 3, this volume]. Variability 
(or aleatory) uncertainty is an attribute of reality and 
refers to the inherent randomness of the natural system 
and by definition cannot be reduced. It is also referred to 
as objective uncertainty, external uncertainty, stochastic 
uncertainty, or random uncertainty [van Asselt and 
Rotmans 2002]. Climate change or weather predictions 
that drive natural hazards are examples of variability 
uncertainties. Knowledge (or epistemic) uncertainty 
refers to the limitation of our knowledge. It can be 
reduced by improved system understanding due to scien-
tific research or acquiring more data. An example is 
the main process that is responsible for the dispersion of 
volcanic ash after an eruption. Scientific research may 

answer this question, thereby reducing the uncertainty. 
Decision uncertainty enters the decision‐making process 
after the estimation of risk has been generated. It deals 
with controversy about valuing social objectives, such as 
the value of a human life. Decision uncertainty can also 
refer to ambiguity or multiple equally valid frames of ref-
erence [DeWulf et al., 2005], where no single truth exists.

How the location dimension is classified will very 
much  depend on the scope of the uncertainty analysis. 
As described earlier, if  the scope extends across the entire 
decision process then locations could include uncertain-
ties related to how problems are defined and framed 
through to logistics of implementation and adaptive 
management. Warmink et al. [2010] define five main loca-
tions of model‐based uncertainty: context, input, model 
structure, model technical, and parameters (Table  2.2). 
Context uncertainty refers to the underlying assumptions 
of the model, which are choices often made during the 
selection of a certain type of model. For example, using a 
two‐dimensional or three‐dimensional model or using a 
global circulation model or a regional model to predict 
weather patterns. Input uncertainties refer to the data that 
describe the modeling domain and time or space depend-
ent driving forces (e.g., solar radiation). Uncertainties in 
these data may be caused by measurement errors. Model 
structure uncertainty refers to the processes in the model 
that describe the system relations. Using an empirical 
relation instead of a process‐based description may 
cause  model structure uncertainties. Model technical 

Table 2.1 Definitions and Examples of the Nature Dimension of Uncertainty

Natures Definitions Examples

Linguistic Ambiguity, vagueness, contextual dependency, evolving 
definitions

Definitions and conceptions of “sustainable” 
and “resilient”

Knowledge Limitations of scientific understanding (reducible); also called 
epistemic

Knowledge gaps in understanding of the 
processes driving volcanic ash dispersal

Variability Inherent variability of natural and human systems (irreducible); 
also called aleatory

Weather patterns driving fires and floods

Decision Social cost‐benefit analysis; unknown or inconsistent preferences How to value a human life

Source: Modified from Ascough et al. [2008].

Table 2.2 Definitions and Examples of the Location Dimension of Uncertainty

Locations Definitions Examples

Context Assumptions and choices underlying the modeling process Spatiotemporal scope of analysis
Input Data to define or describe relevant characteristics for a specific model run Measurement error
Model structure Relationships between variables or model components and underlying 

system
Relying on an empirical rather 

than a process‐based model
Model technical Technical and numerical aspects related to algorithmic and software 

implementation
Trade‐offs between resolution 

and processing time
Parameters A priori determined values invariant within chosen context and 

algorithmic representation
Stress drop parameter in 

earthquake modeling

Source: Modified from Warmink et al. [2010].
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uncertainties arise in the technical and numerical imple-
mentation. Finally, parameter uncertainties refer to the 
constants in the model that can have a physical or empirical 
background. Uncertainty in parameters can be related to 
model calibration.

Last, the level dimension of uncertainty reflects the 
variety of distinct levels of knowledge, and is generally 
broken down according to degree of confidence in prob-
abilities and outcomes. However, these concepts originate 
from broader risk analysis principles focused on hazardous 
events, and may be difficult to directly translate to spe-
cific analysis of a given source of uncertainty depending 
upon its nature and location. Thus, the level of any given 
uncertainty can be highly context dependent. Here we 
borrow from Walker et  al. [2003] and Skinner et  al. 
[2014a], who define three main levels of uncertainty: sta-
tistical, scenario, and recognized ignorance (Table  2.3). 
Determinism is omitted because there is no uncertainty; 
total ignorance is similarly omitted since it isn’t possible 
to identify and classify what isn’t known.

Table  2.4 provides an abbreviated uncertainty matrix 
wherein each identified source of uncertainty is classified 
according to the three dimensions. Our intent is not to 
comprehensively enumerate all potential sources of uncer-
tainty or all potential combinations of nature/location/

level, but rather to illustrate how an uncertainty matrix can 
be developed. As an example we focus on modeling efforts 
that assess the potential for wildfires and the subsequent 
threat of postfire debris flows, the results of which can ulti-
mately inform forest management and risk mitigation 
planning [e.g., Tillery et al., 2014; Haas et al., Chapter 20, 
this volume). Beginning with the top row, linguistic uncer-
tainty regarding alternative definitions of forest resiliency 
could lead to different evaluation criteria and assumptions 
driving model selection (location = context). The second 
row indicates that the frequency of lightning‐caused igni-
tions, an input to fire‐prediction models, is subject to natu-
ral variability that can be characterized statistically. The 
third row indicates knowledge gaps in the structure of 
models that predict fire spread and intensity (level = 
scenario). There are similarly knowledge gaps regarding 
the role of ash in postfire debris flow initiation (fourth 
row), which is very poorly understood (level = recognized 
ignorance), and which likely influences model assumptions 
(location = context). Next, variability in how vegetation 
recovers between the fire and storm event can influence 
calculations of debris flow likelihood. Although these 
dynamics can be modeled directly, the rate of recovery can 
also be used as a parameter in longer‐term modeling efforts 
[e.g., Jones et al., 2014] that may take on a range of values. 

Table 2.3 Definitions and Examples of the Level Dimension of Uncertainty

Levels Definitions Examples

Statistical Possible to characterize uncertainties probabilistically Hazard occurrence probability
Scenario Possible to characterize uncertain outcomes but not their 

respective probabilities
Future global emissions and climate 

scenarios
Recognized ignorance Impossible to outline different possibilities or their outcomes No‐analog vegetation shifts under 

climate change

Source: Modified from Walker et al. [2003] and Skinner et al. [2014a].

Table 2.4 Stylized Uncertainty Matrix Illustrating How Sources of Uncertainty Can Be Analyzed According to Each Dimension: 
Nature, Location, Level

Source

Nature Location Level

L K V D C I MS MT P St Sc RI

Definition of forest resiliency X X X
Frequency of natural and 

human‐caused ignitions
X X X

Equations predicting fire 
spread and intensity

X X X

Role of ash in post‐fire debris 
flow initiation

X X X

Discretized landscape X X X
Value of assets and resources 

impacted by debris flow
X X X

Note: L = linguistic, K = knowledge, V = variability, D = decision, C = Context, I = Input, MS = Model structure, MT = Model 
technical, P = Parameter, St = Statistical, Sc = Scenario, RI = Recognized ignorance.
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The next row identifies that discretized representations of 
the landscape can represent a form of knowledge uncer-
tainty relating to technical model implementation, whose 
influence can often only be discerned through running the 
model with different configurations (level = scenario). 
Last, when quantifying the socioeconomic and ecological 
consequences of postfire debris flows, an input to risk 
assessment calculations, how assets and resources are val-
ued is a source of decision uncertainty that can often be 
characterized statistically through econometric and related 
techniques. More detailed descriptions and classifications 
of uncertainties faced in fire and debris flow modeling are 
available in Riley and Thompson (Chapter 13, this volume) 
and Hyde et al. (Chapter 19, this volume).

Although the final outcome may appear simple, the 
actual population of such a table can be a complex and 
challenging endeavor. In practice, even experienced ana-
lysts and modelers may be unable to identify and classify 
the entire universe of possible uncertainties for any given 
context. Nevertheless the generation and evaluation of 
uncertainty matrices reflect best practices in modeling 
and uncertainty assessment.

2.3. GUIDANCE FOR IDENTIFYING 
AND CLASSIFYING UNCERTAINTIES

It is imperative to describe each uncertainty accurately 
so that it can be uniquely identified across all three 
dimensions. Ideally, the identification of  uncertainties 
results in a list of  unique and complementary uncertain-
ties. Complementary implies that the uncertainties do 
not overlap, which may result in overestimating of  the 
uncertainty. Unique implies that the uncertainties are 
comparable, which can be essential to decision making. 
Warmink et al. [2010] defined three decision trees to aid 
the population of  the uncertainty matrix; we modified 
these decision trees to match our dimensions of 
uncertainty.

Figure 2.3 presents the decision trees to facilitate iden-
tification of the three dimensions of uncertainty. In 
uncertainty identification practice, the borders of the 
classes prove to be difficult leading to discussion about 
the exact classification of an uncertainty. The decision 
trees are based on strict definitions of the individual 
classes in the matrix and help to clarify the classification 
criteria. To identify an uncertainty, we start at the left 
(nature) tree and try to answer the questions. After fol-
lowing all three trees, the uncertainty has a nature, loca-
tion, and level and can be uniquely classified.

Each uncertainty is well defined if  it fits into a single 
class in the uncertainty matrix, so it belongs to only one 
nature, one location, and one dimension. For instance, an 
uncertainty should never be located in the context and in 
the model structure, in which case it is poorly defined. In 

the decision trees, this implies that we need to be able to 
answer all questions. If  we cannot answer a question, this 
means that the uncertainty is not well defined and needs 
to be specified by describing it more accurately. One pos-
sibility to better specify an uncertainty is to unravel it into 
two (or more) separate uncertainties, for example one 
uncertainty in the model structure and one uncertainty 
in  the model context. Then for both uncertainties the 
identification starts again. This iterative process ulti-
mately results in a list of unique and complementary 
uncertainties.

Ideally, the list of uncertainties is complete after the 
identification process. In practice it may not be possible 
reach this ideal situation, because we will never be able to 
cover all uncertainties that influence the model outcomes. 
Expert elicitation methods in combination with the deci-
sion trees, however, can likely increase the number of 
identified uncertainties. Comprehensive and thorough 
discussion of all possible sources of uncertainty can 
encourage experts to look beyond their first thoughts and 
more deeply consider model‐based uncertainties includ-
ing implicit assumptions and other contextual factors. 
A  structured identification of uncertainties results in a 
better overview of uncertainties, which is an essential first 
step in uncertainty management.

2.4. TECHNIQUES FOR EVALUATING 
UNCERTAINTY

There is a rich set of modeling frameworks and uncer-
tainty evaluation techniques that can be used throughout 
modeling and decision processes [Matott et  al., 2009; 
Bastin et al., 2013]. These techniques can be used to assess 
potential uncertainty propagation and uncertainty in 
model outputs, and more generally to identify appropri-
ate modeling approaches given the characteristics of 
uncertainties faced. Refsgaard et  al. [2007] identify five 
groups of uncertainty analysis methodologies that differ 
according to purpose of  use: (1) preliminary identifi-
cation and characterization of sources of uncertainty, 
(2)  assessment of levels of uncertainty, (3) analysis of 
uncertainty propagation through models, (4) ranking 
sources of uncertainty, and (5) reduction of uncertainty. 
A comprehensive review of all possible techniques along 
with a mapping to all possible combinations of three‐
dimensional uncertainty classifications is beyond the 
scope of this chapter. For instance, to assess the effect of 
an uncertainty due to model structure with a knowledge 
nature and scenario level, we can use the scenario analysis 
technique. However, sensitivity analysis [e.g., Van der 
Perk, 1997] or Monte‐Carlo‐based methods [e.g., Pappen
berger et al., 2006] are also applicable. Even expert elicitation 
might be used to quantify the uncertainty due to model 
structure error [Warmink et al., 2011].
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The advantages of using Monte‐Carlo‐based methods 
are that it is objective and uncertainties are quantified. 
Disadvantages are that the data acquisition and modeling 
process are time consuming and that only statistical 
uncertainties are considered. Expert elicitation on the 
other hand is relatively quick and provides a more 
c omprehensive overview of the uncertainties, because it 
analyzes all levels and natures of uncertainty. However, 
its disadvantage is that it is more subjective. Another 
example is an uncertainty in the model context, where the 
decision of which input to use to predict a certain risk 
was not agreed upon. This uncertainty may have a deci-
sion nature and a level of (recognized) ignorance. 
Techniques to manage this uncertainty include scenario 
analysis [Refsgaard et  al., 2007], multicriteria decision 
analysis, or approaches toward resolving conflicting 
views [Brugnach et al., 2008].

For each class in the uncertainty matrix, many tech-
niques exist. In general terms, sensitivity analysis, s cenario 
analysis, Monte Carlo simulation, fuzzy logic, expert 

judgment elicitation, Bayesian belief  networks, multicri-
teria decision analysis, and combinations thereof, are 
common approaches. The most suitable technique in the 
end depends on the amount of available data and the 
required level of detail. More information on these tech-
niques and other approaches to evaluating uncertainty 
can be found in van der Sluijs et al. [2005], Refsgaard et al. 
[2007], Matott et al. [2009], Bastin et al. [2013], Thompson 
et al. [2013], and Skinner et al. [2014a,b]. Here we focused 
on the identification and classification of uncertainties, 
using the uncertainty typology and uncertainty matrix as 
critical initial steps that can offer guidance for the appro-
priate evaluation and management of uncertainty. 
Starting with clarity in modeling context and objectives 
along with a firm understanding of uncertainties faced 
can go a long way toward selection of appropriate 
approaches. The selection of a specific uncertainty evalu-
ation technique should link directly with the specific 
uncertainty, and should incorporate all three dimensions 
of that uncertainty.

Nature Location Level
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Can the probability
of the uncertainty

be quantified?

Level: statistical
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Figure 2.3 Three decision trees for classifying each dimension of uncertainty, modified from Warmink et al. [2010].
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2.5. DISCUSSION

In this chapter, we focused on the application of uncer-
tainty analysis methods and tools to the context of natu-
ral hazard modeling. In particular, we introduced three 
key tools, the uncertainty typology (the three dimensions 
of uncertainty), the uncertainty matrix (a graphical over-
view of the essential features of uncertainty), and decision 
trees (guidance for populating the typology and matrix) 
and described their relation to identification, classifica-
tion, and evaluation of uncertainties. We mentioned 
some of the more common techniques and gave direction 
as to how to select one to use in the development as well 
as evaluation of natural hazard modeling.

It is important to recognize that model‐based uncer-
tainties are not necessarily the most salient or significant 
impediment to efficient hazard and risk mitigation. 
Technical assessments of uncertainty, although neces-
sary, may be insufficient when considering the broader 
context in which decisions are made [Brown, 2010]. That 
is, uncertainties can influence all stages of the decision 
process, and, depending upon the context it may be 
important to comprehensively analyze their characteris-
tics and potential consequences. Uncertainty analyses 
that focus on the entire decision‐making process will 
n ecessarily entail a broader set of uncertainties related to 
human communication, perceptions, and preferences, 
and may entail a different set of approaches to addressing 
the respective uncertainties [Maier et al., 2008].

Uncertainty analysis aids in development of a common 
understanding of modeling efforts, can serve as a starting 
point for modeling processes, and can clarify the role of 
modeling in broader decision processes. The frameworks 
we introduced here for the three dimensions of uncer-
tainty are not intended to be universal, and every context 
will need to be evaluated in its own right. Identifying 
and  classifying uncertainties facilitates communication 
between stakeholders, scientists/analysts, and decision 
makers, and helps prioritize effective ways of managing 
uncertainties [Gabbert et al., 2010]. Clear communication 
can become even more important when modeling efforts 
are interdisciplinary [Rauser and Geppert, Chapter 3, this 
volume], and span modeling domains from hazard likeli-
hood and intensity to consequences and mitigation 
opportunities.
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