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Abstract
The ecological effects of forest fires burning with high severity are long-lived and have the
greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity
fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that
wind-driven, large fire-growth days play a significant role, particularly on large fires in forested
ecosystems. Here, we examined the relative proportion of classified burn severity for individual
daily areas burned that occurred during 42 large forest fires in central Idaho and western
Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or
more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned
from which we calculated the proportions of each of three burn severity classes (high, moderate,
and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring
Trends in Burn Severity project. We found that the proportion of high burn severity was weakly
correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly
variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire
extent influence the ecological effects of fires. We suggest that these results do not support the
prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in
this prioritization is a positive relationship between severity and area burned in a day.

Keywords: burn severity, daily area burned, dNBR, fire progression, forest fires, infrared
perimeter mapping, northern Rockies

1. Introduction

Extreme wildfires are often so defined because they are of
record size, produce numerous fatalities, significantly alter
ecological trajectories of succession, and initiate new or
revised fire management policies (Pyne 2004, Kolden and
Brown 2010, Lannom et al 2014). Globally, several extre-
mely large fires have occurred over the last century, notably
the Great Fire of 1910 in Idaho and Montana, USA (Pyne
et al 1996), the 1988 Yellowstone Fires (Turner et al 1994),

the 1997 Indonesian Forest Fires, and the Australian Black
Saturday Fire in 2009.

The number of large wildland fires in the western United
States has increased four-fold in recent decades (Westerling
et al 2006), producing increases in fire extent (Littell
et al 2009), costs of management (Butry 2001), and threats to
people and property (Theobald and Romme 2007). The pro-
portion of area burned with high burn severity has also
increased in some areas (Dillon et al 2011, Miller and Saf-
ford 2012, Mallek et al 2013), where burn severity is com-
monly defined as the degree of ecosystem change following a
fire (Ryan and Noste 1985, Morgan et al 2001, Lentile
et al 2006). Individual large fires consume significant
amounts of biomass (Hicke et al 2013) and can have long-
term ecological effects on vegetation structure and
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composition (Kashian et al 2006, Goetz et al 2007, Romme
et al 2011), but less is known about the degree of overall
ecological change caused by the largest fires (Turner
et al 1997, Keane et al 2008) or in areas of rapid fire growth
(Turner et al 1994) when fires make large advances, or ‘runs’.
When large fire runs result in a large area burned in a day, it is
commonly described as an extreme fire behavior event, but
high tree mortality does not always result (Hudak et al 2007,
Lentile et al 2007).

High intensity fires can result in high tree mortality.
Using daily area burned (DAB) maps from the 1988 Greater
Yellowstone Fires, Turner et al (1994) found that when DAB
exceeded 1250 ha, about half of that area burned with crown
fire,. Heward et al (2013) found that high burn severity and
high fire intensity generally occur concurrently across the
western US. Fires that burn under weather conditions that
significantly deviate from statistical norms have a higher
proportion of crown fires (Turner et al 1994) and higher
severity (Bigler et al 2005) in Rocky Mountain forested
ecosystems. Extreme weather and high severity fire often
occur together, with wind playing a large part in fire intensity
and fire extent (Beer 1991, Bessie and Johnson 1995), and it
is under those conditions we expect high tree mortality
(Stephens and Moghaddas 2005).

We set out to test whether larger daily areas burned in
forests were characterized by a greater proportion of high
burn severity or if they simply burned more area. We focused
on fires that occurred in the Northern Rockies, USA, due to its
preponderance of fire monitoring data. Using infrared (IR)
perimeter mapping data and maps of burn severity, we
compared individual daily areas burned from 42 wildfires and
the proportion of high burn severity within those areas to
test if the proportion of high burn severity was strongly
correlated to area burned. Additionally, we wanted to deter-
mine if the largest daily fire runs (95th percentile, DAB
greater than 108 ha) resulted in a higher proportion of high
burn severity.

2. Methods

2.1. Study area

The US northern Rocky Mountains (hereafter referred to as
the Northern Rockies) have experienced large fires through-
out the 20th century (Morgan et al 2008), a trend expected to
continue through the 21st century (Littell et al 2009, Lit-
tell 2011, Spracklen et al 2009). The Northern Rockies are
characterized by a distribution of dry, cold, and mesic forest
types (Morgan et al 2008) of mixed conifer and pine forests
that are generally stratified by elevation and aspect gradients
(Arno 1980). We selected 42 fires from this region (figure 1,
table 1) during the years 1984–2011, based on the availability
of both differenced normalized burn ratio (dNBR) indices and
IR perimeter maps for a given fire.

2.2. IR perimeter mapping

Fire managers commonly use IR perimeter maps to establish
areas of fire growth and calculate overall fire size on wildfire
incidents. Airborne IR flights are usually conducted at night
or in early morning, both to maximize thermal contrast and to
provide wildland fire managers with perimeter maps for
decision making associated with upcoming daily operations
(Quayle et al 2012). We obtained IR perimeter mapping data
from the National Interagency Fire Center (2013) File
Transfer Protocol (FTP) site (http://ftpinfo.nifc.gov), which is
used to store and transfer wildland fire incident data and
documents (including remotely sensed and other geographic
information data). We required a minimum of five con-
secutive days of IR perimeter maps per fire in order to exclude
areas of inconsistent perimeter mapping. Many of these
inconsistencies can be attributed to ‘blooming’ of the IR
image, which can occur when fire columns or convective
currents include hot gases at a temperature sufficient to be
detected as a heat source (Quayle et al 2012). Another pos-
sible source of inconsistency is interpreter error. Deviations in
accuracy of perimeter mapping from IR images due to error
by interpreter personnel is generally within a range of plus or
minus 10 m (T Zajkowski, Forest Service, personal
communication).

Spatial maps of DAB (see figure 2 for example) for each
of the 42 fires were constructed by subtracting the perimeter
of the last mapped day from the perimeter of the previous day,
and so on to the start of the mapped sequence. We used fire
area from the first mapped day to calculate area burned for the
next day, but did not include it in the area analyzed. In this
way, the minimum number of five consecutive days of
mapped IR perimeter per fire resulted in at least four days of
DAB per fire. If the previous day’s IR perimeter extended
spatially beyond the current day perimeter, we excluded that
overlap from analysis. To address the inaccuracies of IR
mapping associated with blooming and geospatial location,
we buffered IR perimeter maps by 30 m. Areas that were not
classified as high, moderate or low burn severity were
excluded from calculations of proportion burned and
DAB size.

2.3. Burn severity inferred from dNBR

Wildfire burn severity has been defined several ways (e.g.
Ryan and Noste 1985, Lentile et al 2006, Keeley 2009,
Kolden and Rogan 2013). We define it here as the degree of
ecosystem change following a fire (Morgan et al 2001,
Lentile et al 2006). We use the dNBR (Key and Ben-
son 2006), a spectral index calculated from multispectral
remotely sensed data, to infer severity. While we acknowl-
edge that dNBR is a unitless ratio of optical reflectance and
itself not a measure of severity, this spectral index has shown
reasonable correlations with aboveground vegetation mortal-
ity (Lentile et al 2009) and other surface changes (Smith
et al 2007). We thus considered the dNBR severity classifi-
cations of low, moderate, and high as proxies for those sur-
face changes. A detailed overview of severity methods and
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terminology can be found in recent reviews (Lentile
et al 2006, Keeley 2009).

We retrieved classified dNBR data compiled by the
Monitoring Trends in Burn Severity project (MTBS, www.
mtbs.gov, Eidenshink et al 2007), which has mapped and
classified dNBR for all western US fires greater than 4 km2

since 1984 from multispectral data acquired by the Thematic

Mapper (TM) sensor on Landsats 4 and 5, the Enhanced
Thematic Mapper-plus (ETM+) sensor on Landsat 7, and the
Operational Land Imager (OLI) sensor on Landsat 8. The
dNBR raster for each fire is calculated using the near-IR band
short-wave IR bands from near-anniversary dates, cloud-free
pre- and post-fire scenes (Key and Benson 2006). We selected
those MTBS fires with scene acquisition dates within a

Environ. Res. Lett. 9 (2014) 064011 D S Birch et al

Figure 1. Study area of central Idaho and western Montana illustrating 42 wildland forest fires used in this analysis.
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maximum separation of less than 30 days (to limit the impacts
of changing sun angles) and three years between pre- and
post-fire scenes (to limit impacts of vegetation growth and
succession) according to best practices described by Key
(2006). All dNBR calculations used approximately one-year
post-fire satellite scenes. Three-year separation between pre-
and post-fire scenes was required in order to accommodate
burn severity mapping of several large wildfires of the 2007
fire season: the Rattlesnake Complex fires and the Cascade
Complex fires (LoonZena and Raines). This three-year pre-
fire satellite scene selection included 15 fires total, all of
which occurred during the 2007 fire season (table 1). These
fires accounted for 49 489 (58%) ha of area analyzed. The
final size of each DAB was calculated as the area classified as
having burned at low, moderate, or high severity by the
MTBS project, and excluded the areas mapped by IR peri-
meters but not mapped by MTBS, scan-line corrector errors of
Landsat 7, non-processed masked areas, and the ‘unburned to
low’ and ‘increased greenness’ categories of MTBS.

2.4. Burn severity proportions

We calculated proportions of low, moderate, and high burn
severity classes for every DAB equal to or greater than
0.81 ha. The threshold of 0.81 ha was selected as a minimum
size because it corresponds to a 3 × 3 Landsat pixel area
(90 m× 90 m). This also allowed us to stipulate that the area
was actual fire growth and not subpixel-scale differences in
interpretation of IR perimeter data. Loss of area due to
removal of DABs of less than 0.81 ha totaled 655 ha
(<0.008% of area). We mapped 2697 DABs for analysis,
totaling 84 801 ha.

2.5. Statistical analysis

We calculated Kendall’s Tau (τ, Kendall 1976) for correla-
tions between proportion high burn severity and the size of
DABs for both all DABs and only DABs larger than 108 ha,
the 95th percentile size threshold of all DAB sizes. We did
this to specifically test if large DABs (large fire runs) func-
tioned differently than the dataset as a whole and correlated to
significantly greater area classified as high severity. We
considered alternative approaches, such as the Bayesian-
based approaches used by Mallek et al (2013), including
generalized linear mixed effects models. With the very high
variability in the proportion burned severely, especially with
small to moderately sized DABs, we opted for the simpler,
albeit less powerful approach because there was no pre-
sumption of underlying probability distribution. To determine
if there was a significant difference between smaller (<108 ha)
and the largest (>108 ha) DABs above the 95th percentile, we
conduct a Kolmogorov–Smirnov test (Conover 1971) of
significant difference between proportion distributions, stra-
tified by severity class.

Environ. Res. Lett. 9 (2014) 064011 D S Birch et al

Table 1. Daily areas burned (DAB) for 42 fires from central Idaho
and western Montana. DABs were delineated using five or more
consecutive daily infrared perimeter maps.

Year Fire
Area ana-
lyzed (ha)

Number
of DABs

Largest
DAB
(ha)

2005 Beaver Jack 479 25 327
2005 Burnt Strip

Mountain
1991 57 459

2005 Center 51 8 17
2005 Reynolds

Lake
162 24 27

2005 Rockin 104 11 63
2005 Signal Rock 917 59 147
2006 Boundary 109 13 43
2006 Meadow 410 29 91
2006 North Elk 216 19 57
2006 Potato 566 9 456
2006 Red Mountain 948 17 488
2007a Cascade

Complexb
2690 212 238

2007 Castle Rock 5238 104 1065
2007a Cottonwood 943 38 159
2007 Fisher Point 2404 126 563
2007a Goat 2245 41 1556
2007a Lolo 1282 97 228
2007a LoonZena 1151 127 301
2007a Monumental 2245 58 604
2007a Monumental-

North Forkc
3438 176 353

2007a Monumental-
Yellowd

9758 118 1831

2007a North Fork 5576 63 2849
2007 Papoose 146 28 54
2007a Raines 989 74 302
2007a Rattlesnake 9308 196 2664
2007a Red Bluff 1983 44 538
2007a Riordan 3975 107 861
2007 Rombo

Mountain
441 37 110

2007a Sandy 2794 25 971
2007a Shower Bath 73 12 22
2007 Tag 4249 169 885
2007a Trapper Ridge 370 18 86
2007 Wyman #2 4152 132 388
2007a Yellow 669 27 126
2011 Castro 465 43 68
2011 Coyote

Meadows
64 11 28

2011 Hells Half 121 12 37
2011 Indian 97 7 47
2011 Saddle 7219 125 5209
2011 Salt 52 132 3
2011 Up Top 1442 105 200
2011 West

River Side
354 18 251

Totals 84 801 2697 5209

a
Fires that were sampled using two-year pre-fire satellite scene.

b Cascade Complex includes North Fork, Monumental, Yellow, Sandy, and
Riordan fires of 2007 after they were mapped as one IR perimeter.
c Monumental-North Fork includes the Monumental and North Fork fires

after they were mapped as one IR perimeter.
d Monumental-Yellow includes Monumental, North Fork, Sandy, and
Yellow fires after they were mapped as one IR perimeter.
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3. Results

DABs varied in size from 0.81 ha to 5209 ha (figure 3). We
found that the proportion burned with high severity was
significantly, but weakly, positively correlated with DAB size
(τ = 0.299, P< 0.001) when all DAB sizes were analyzed
(figure 4). Proportion low severity (τ= −0.169, P< 0.001) and
proportion moderate severity (τ= −0.043, P< 0.001) were
both significantly but weakly and negatively correlated
with DAB size. The 135 DABs that exceeded the 95th per-
centile (>108 ha) comprised 64% (54 195 ha) of the total
burned area analyzed. When analyzing only these largest
DABs, the proportion burned with high severity was also
weakly, but positively correlated to area burned (τ = 0.118,
P = 0.043).

Median proportions of burn severity classes within the
smaller (⩽108 ha) DABs below the 95th percentile were 43%
low severity, 33% moderate severity, and 13% high severity;
with median proportions within the largest DABs: 23% low
severity, 26% moderate severity, and 49% high severity.
(figure 5). Smaller DABs (⩽108 ha) were characterized by
significantly greater proportions of low (D = 0.332, P< 0.001)
and moderate (D= 0.320, P < 0.001) severity fire, while
DABs exceeding the 95th percentile (>108 ha) were

characterized by a significantly greater proportion of high
severity fire effects (D = 0.480, P< 0.001).

4. Discussion

It is somewhat counter-intuitive and yet ecologically impor-
tant that proportion burned at high severity was only weakly
correlated with both large and small sizes of daily areas
burned in the 42 large wildland fires we analyzed. Although
large DABs may burn at significantly greater proportion of
high severity at times, variation is high. When burned areas
occurred below 95th percentile thresholds, in this study
108 ha, DAB had little or no influence on severity. Larger,
more severely burned areas are slower to regenerate to trees
(Lentile et al 2005), experience delayed vegetation recovery
(White et al 1996), and may pose more risk for erosion
(Robichaud et al 2000), and have a greater influence on
wildlife habitat (Romme and Knight 1981). Because of these
increased risks, and often due to the perceptions and media
portrayals of large runs as being ‘catastrophic,’ these areas are
often prioritized during post-fire rehabilitation efforts. Our
results suggest this prioritization may be unnecessary—large
fires and large fire runs are not all burned with high severity.

Environ. Res. Lett. 9 (2014) 064011 D S Birch et al

Figure 2. Example of daily areas burned (DAB) that occurred on the Burnt Strip Mountain Fire in central Idaho on 2 September 2005, and the
associated burn severity. Areas within DABs other than low, moderate or high burn severity (i.e., white areas outside infrared perimeter, or
unburned to low) were removed from analysis.
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Burn severity can be related to environmental conditions,
including topography, weather, climate and vegetation
(Kushla and Ripple 1997, Holden et al 2009, Dillon
et al 2011). Available fuel can play a predominant role in
determining fire severity, particularly in the wildland urban
interface (Hudak et al 2011). The fires we analyzed burned
through many different forest vegetation types and conditions
that surely influenced the fire behavior and effects. Birch
(2013) analyzed the environmental controls on burn severity
at 10 819 randomly located points in these fires. He found that
percent existing vegetation cover was most important, with
other topography and vegetation variables more important
than climate and weather. One of the variables that is difficult
to test in these studies is the role of wind events in

determining burn severity, even though wind is well estab-
lished as being critical to driving fire behavior (Bessie and
Johnson 1995). Since wind events are a primary driver of
large fire runs in a single day (Westerling et al 2004), the lack
of a strong correlation between high burn severity and DAB
size for both groups (i.e., all DABs and only large DABs)
found here suggests that wind is not necessarily a primary
driver of burn severity in forests of the Northern Rockies, but
this warrants further study to understand the causes of burn
severity. Both Dillon et al (2011) and Birch (2013) found
wind to be less of a contributor to burn severity than topo-
graphy, vegetation, and climate factors.

The dNBR is imperfect in observing all aspects of burn
severity (Lentile et al 2009, Smith et al 2010), though it has

Environ. Res. Lett. 9 (2014) 064011 D S Birch et al

Figure 3. Histogram of 2697 individual daily areas burned used for this analysis. Note use of log scale. Number of Bins = 70.

Figure 4. Scatterplots of proportions of low, moderate, and high burn severities for 2697 daily areas burned (DABs) relative to size of DAB.
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been found to be correlated with percent tree mortality and
less strongly with other fire effects on the understory or the
ground surface (Hudak et al 2007, Smith et al 2007). For
areas of low biomass prior to fire, the relativized dNBR
(Miller and Thode 2007) or the RBR (Parks et al 2014) are
useful, but 81% of the area we analyzed was forested, so we
chose to use dNBR. Additionally, values of both ground
observed and remotely sensed burn severity represent similar
conditions at higher burn severity values (Cocke et al 2005).
We used data from MTBS, but classification thresholds and
perimeter delineation are subjectively determined by analysts
and may be inconsistently applied (Eidenshink et al 2007,
Kolden and Weisberg 2007). Additionally, the area analyzed
from across the four years may not be a full representation of
the variability in conditions under which fires occur in the
Northern Rockies. The effects of wildland firefighting sup-
pression tactics, such as burnout operations, which have the
ability to alter fire activity, are not considered here although
they may modify the naturally occurring area burned and
burn severity, as might prior fire and vegetation (fuel)
management.

Understanding the behavior and evolution of large fires,
as well as their ecological effects, is critical for fire and land
managers. Large fires account for the majority of area burned
(Calkin et al 2005), and the trend towards increasing size and
frequency of large fires is expected to continue through the
21st century (Running 2006, Littell et al 2009, Littell 2011,
Spracklen et al 2009). Large DABs are of particular concern,
since their spread rates often present challenges for evacuat-
ing civilians and safely and effectively managing and sup-
pressing wildfires (Rothermel 1993, Governor’s Blue Ribbon
Fire Commission 2004). Rapidly burning fires and related
large fire growth have contributed to the death of many
wildland firefighters in Mann Gulch (Rothermel 1993), South
Canyon (Rosenkrance et al 1994), Cramer (Office of
Inspector General 2004), and most recently the Yarnell Fire,

which claimed the lives of 19 fire fighters (Arizona State
Forestry Division 2013). Further research can potentially help
identify both landscape characteristics conducive to large
DABs and management actions (such as vegetation treat-
ments or suppression approaches) that will minimize their
negative impacts. The use of IR perimeter mapping to char-
acterize DAB rates from multiple explanatory environmental
variables will contribute to improved understanding of fire
effects and fire behavior.
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