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Abstract
Genetic	networks	can	characterize	complex	genetic	relationships	among	groups	of	
individuals,	which	can	be	used	to	rank	nodes	most	important	to	the	overall	connec-
tivity	of	the	system.	Ranking	allows	scarce	resources	to	be	guided	toward	nodes	in-
tegral	 to	 connectivity.	 The	 greater	 sage-	grouse	 (Centrocercus urophasianus)	 is	 a	
species	of	conservation	concern	that	breeds	on	spatially	discrete	leks	that	must	re-
main	 connected	 by	 genetic	 exchange	 for	 population	 persistence.	 We	 genotyped	
5,950	individuals	from	1,200	greater	sage-	grouse	leks	distributed	across	the	entire	
species’	geographic	range.	We	found	a	small-	world	network	composed	of	458	nodes	
connected	by	14,481	edges.	This	network	was	composed	of	hubs—that	is,	nodes	fa-
cilitating	gene	flow	across	the	network—and	spokes—that	is,	nodes	where	connectiv-
ity	is	served	by	hubs.	It	is	within	these	hubs	that	the	greatest	genetic	diversity	was	
housed.	Using	indices	of	network	centrality,	we	identified	hub	nodes	of	greatest	con-
servation	 importance.	We	 also	 identified	 keystone	nodes	with	 elevated	 centrality	
despite	 low	 local	population	size.	Hub	and	keystone	nodes	were	found	across	the	
entire	 species’	 contiguous	 range,	 although	 nodes	 with	 elevated	 importance	 to	
network-	wide	connectivity	were	found	more	central:	especially	in	northeastern,	cen-
tral,	and	southwestern	Wyoming	and	eastern	Idaho.	Nodes	among	which	genes	are	
most	readily	exchanged	were	mostly	located	in	Montana	and	northern	Wyoming,	as	
well	as	Utah	and	eastern	Nevada.	The	loss	of	hub	or	keystone	nodes	could	lead	to	the	
disintegration	of	the	network	into	smaller,	isolated	subnetworks.	Protecting	both	hub	
nodes	and	keystone	nodes	will	conserve	genetic	diversity	and	should	maintain	net-
work	connections	to	ensure	a	resilient	and	viable	population	over	time.	Our	analysis	
shows	that	network	models	can	be	used	to	model	gene	flow,	offering	insights	into	its	
pattern	and	process,	with	application	to	prioritizing	landscapes	for	conservation.
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1  | INTRODUC TION

Understanding	 population	 structure	 and	 quantifying	 genetic	 con-
nectivity	 are	 important	 for	 guiding	ongoing	 conservation	 and	 res-
toration	efforts	(Crooks	&	Sanjayan,	2006).	Traditionally,	population	
structure	 is	first	analyzed	and	subpopulations	delineated,	then	ge-
netic	 connectivity	 among	 subpopulations	 is	 quantified.	 However,	
this	process	need	not	be	completed	in	two	stages.	Genetic	network	
models	can	be	used	to	simultaneously	gain	an	understanding	of	pop-
ulation	structure	and	to	quantify	genetic	connectivity	among	popu-
lations	in	natural	systems	(Bunn,	Urban,	&	Keitt,	2000;	Dyer,	2007;	
Dyer	&	Nason,	2004).

Genetic	networks	are	constructed	of	components	called	nodes	
and	 edges,	 where	 nodes	 may	 represent	 populations	 and	 edges	
represent	 genetic	 connectivity	 among	 nodes	 (Sallaberry,	 Zaidi,	 &	
Melançon,	 2013).	 Each	 node	 can	 be	 weighted	 by	 the	 genetic	 di-
versity	within	 the	nodes	and	each	edge	by	 the	genetic	covariance	
among	local	populations	(Bunn	et	al.,	2000).	The	overall	structure	of	
the	network	provides	a	means	by	which	to	rank	the	importance	of	
how	each	component	contributes	 to	maintaining	network	connec-
tivity	(Jacoby	&	Freeman,	2016).	One	can	think	of	network	structure	
in	terms	of	the	commercial	airline	model.	In	such	models,	nodes	and	
edges	are	known,	as	are	nodes	of	high	and	low	connectivity	(hence-
forth,	hub	nodes	and	spoke	nodes,	respectively).	In	the	airline	indus-
try,	hub	nodes	are	strategically	 selected	 to	maximize	efficiency	of	
air	traffic,	while	spoke	nodes	are	selected	based	on	limited	need	for	
services.	For	wildlife	populations,	where	populations	serve	as	hub	
nodes	and	where	populations	serve	as	spoke	nodes	are	unknown.

Qualifying	genetic	network	structure	and	identifying	nodes	that	
act	 as	hubs	can	be	very	 informative	 to	conservation	and	manage-
ment	of	wildlife	species	(Garroway,	Bowman,	Carr,	&	Wilson,	2008;	
Lookingbill,	Gardner,	 Ferrari,	&	Keller,	 2010).	Knowledge	of	which	
nodes	are	connected	to	one	another	and	which	nodes	 rank	highly	
in	 network	 centrality	 can	 facilitate	 prioritization	 for	 management	
(Jacoby	&	Freeman,	2016).	Prior	network	modeling	of	wildlife	pop-
ulations	have	shown	that	which	nodes	function	as	hubs	and	which	
function	 as	 spokes	 is	 not	 intuitive	 (Bunn	 et	al.,	 2000;	 Garroway,	
Bowman,	&	Wilson,	 2011;	Garroway	 et	al.,	 2008;	 Koen,	 Bowman,	
&	Wilson,	2015).	One	might	expect	a	node’s	proximity	to	the	cen-
ter	of	the	species’	range	would	influence	that	node’s	importance	to	
connectivity,	 where	 centrally	 located	 nodes	 have	 greater	 genetic	
exchange	than	peripheral	nodes.	However,	 it	has	been	shown	that	
populations	at	 the	periphery	of	a	species’	 range	can	act	as	critical	
hub	 nodes,	 connecting	 populations	 across	 the	 network,	 and	 that	
populations	located	toward	the	center	of	the	range	do	not	necessar-
ily	function	as	hub	nodes	(Bunn	et	al.,	2000).

Emergent	properties	of	genetic	networks	can	be	used	to	 iden-
tify	 hub	 nodes	 and	 spoke	 nodes	 and	 the	 sensitivity	 of	 the	 entire	
network	 to	 the	 loss	of	connectivity	 (Dunne,	Williams,	&	Martinez,	
2002).	There	are	three	common	network	structures:	(1)	single-	scale	
(“regular”),	 (2)	 broad-	scale	 (“random”),	 and	 (3)	 small-	world—a	 sub-
set	of	which	are	known	as	scale-	free	(Amaral,	Scala,	Barthélémy,	&	
Stanley,	2000;	Bray,	2003).	Regular	networks	are	highly	structured	

such	that	proximal	nodes	tend	to	be	linked	to	each	other,	while	dis-
tant	nodes	tend	not	to	be	linked:	a	structure	comparable	to	the	iso-
lation	by	distance	pattern	commonly	discovered	 in	 the	population	
genetics	 literature	 (e.g.,	 a	 stepping-	stone	model;	Wright,	 1943).	 In	
a	 regular	 genetic	network,	 genetic	 connectivity	 is	between	neigh-
boring	 nodes	 and	 nodes	 separated	 by	 a	 greater	 number	 of	 edges	
will	 be	more	 isolated	 from	 one	 another.	 In	 regular	 networks,	 hub	
nodes	are	nonexistent	as	all	nodes	are	equally	connected.	Random	
networks	 are	 unstructured	 such	 that	 proximity	 of	 nodes	 is	 irrele-
vant	to	whether	nodes	are	connected	or	not	and	to	the	strength	of	
connections:	a	structure	most	similar	to	the	theoretical	island	model	
first	 proposed	 by	Wright	 (1931)	 and	 analogous	 to	 the	 population	
genetic	concept	of	panmixia.	In	a	random	genetic	network,	genetic	
connectivity	 is	 unencumbered	 across	 the	 entire	 network	 because	
the	number	of	steps	between	any	two	nodes	is	relatively	small	such	
that	close	and	distant	nodes	have	equal	chances	of	being	linked.	In	
random	networks,	there	are	no	hub	nodes,	but	there	exist	thorough-
fares	through	the	network	that	 foster	quick	transit	among	any	set	
of	 nodes.	 In	 contrast,	 small-	world	 networks	 are	 composed	of	 few	
highly	connected	nodes	(hub	nodes)	and	a	greater	number	of	more	
isolated	 nodes	 (spoke	 nodes),	 much	 like	 the	 hub-	and-	node	model	
characteristic	of	the	familiar	commercial	airline	model.	Most	nodes	
can	be	reached	from	every	other	node	by	a	small	number	of	steps,	
often	routed	through	central	hub	nodes,	which	foster	connectivity	
among	the	spoke	nodes.	Redundancy	is	an	important	characteristic	
of	 small-	world	networks.	 In	 small-	world	genetic	networks,	genetic	
connectivity	is	greatest	among	nearest	neighbor	nodes,	but	genetic	
connectivity	can	exist	between	any	two	nodes	by	a	small	number	of	
steps	through	hub	nodes	which	are	nodes	at	which	genetic	connec-
tivity	is	concentrated	such	that	these	nodes	serve	to	connect	other	
distal	nodes	(also	known	as,	spoke	nodes).	An	extreme	form	of	small-	
world	networks	is	scale-	free	networks.	In	scale-	free	networks,	there	
is	 less	redundancy	 in	 internode	connections	and	greater	centrality	
for	the	hub	nodes.

Within	any	network’s	 structure,	 individual	node	 importance	 to	
network	connectivity	can	be	quantified	by	centrality	indices.	There	
are	 several	 centrality	 indices,	 each	of	which	 quantifies	 the	 impor-
tance	of	a	node	to	network	connectivity	in	a	different	way	(Table	1).	
Some	 centrality	 indices	 rank	 nodes	 based	 on	 local	 connectivity	
and	 some	 based	 on	 network-	wide	 connectivity.	 Therefore,	 these	
function-	valued	 centrality	 indices	 can	 be	 easily	 transformed	 into	
node-	specific	rankings,	and	these	rankings	can	be	used	to	prioritize	
conservation	(Jacoby	&	Freeman,	2016).

The	 greater	 sage-	grouse	 (Centrocercus urophasianus;	 hereafter,	
sage-	grouse;	Figure	1)	is	a	lekking	gallinaceous	bird	of	conservation	
concern,	an	indicator	species	for	sagebrush	(Artemisia	spp.)	commu-
nities	(Rowland,	Wisdom,	Suring,	&	Meinke,	2006),	and	an	indicator	
species	for	landscape-	scale	connectivity	across	the	western	United	
States	and	southern	Canada	(Aldridge	et	al.,	2008).	Sage-	grouse	once	
occupied	 over	 1.2	million	km2	 (Edminster,	 1954;	 Schroeder	 et	al.,	
2004).	The	species	now	occupies	 less	than	0.67	million	km2	across	
11	 western	 states	 and	 two	 Canadian	 provinces	 (Patterson,	 1952;	
Schroeder	et	al.,	2004)—56%	of	its	range	compared	to	pre-	Western	
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Settlement	 (Schroeder	 et	al.,	 2004).	 An	 additional	 29%	 of	 the	 re-
maining	species’	range	is	likely	at	risk	of	extirpation	(Aldridge	et	al.,	
2008).	 Increased	 geographic	 isolation	 and	 declines	 in	 sage-	grouse	
populations	 range-	wide	 coincide	 with	 fragmentation	 and	 loss	 of	
sagebrush	due	to	changes	in	 land	use	(Copeland,	Doherty,	Naugle,	
Pocewicz,	 &	 Kiesecker,	 2009;	 Knick	 et	al.,	 2003;	 Schrag,	 Konrad,	
Miller,	Walker,	&	Forrest,	2011).

Sagebrush	 provides	 essential	 cover,	 is	 a	 staple	 of	 the	 species’	
diet,	 is	where	the	bird	nests	and	rears	 its	broods,	and	congregates	
in	the	spring	to	display	and	breed	on	leks	(Beever	&	Aldridge,	2011;	

Hagen,	 Connelly,	 &	 Schroeder,	 2007;	 Patterson,	 1952;	 Remington	
&	Braun,	1985;	Wallestad	&	Eng,	1975).	On	leks,	males	battle	with	
one	another	to	claim	the	center	and	energetically	display	to	potential	
mates.	Lek	attendance	by	males	 is	significantly	correlated	with	fe-
male	lek	attendance	(Bradbury,	Vehrencamp,	&	Gibson,	1989).

Despite	 long	 seasonal	 migratory	 movements	 (up	 to	 240	km;	
Smith,	2012)	and	 large	home	ranges	 (4–195	km2;	Connelly,	Hagen,	
&	Schroeder,	2011;	Connelly,	Rinkes,	&	Braun,	2011),	fidelity	to	leks	
and	 stability	 in	 lek	 location	 are	 well	 documented	 (Cross,	 Naugle,	
Carlson,	 &	 Schwartz,	 2017;	 Dalke,	 Pyrah,	 Stanton,	 Crawford,	 &	
Schlatterer,	 1963;	 Dunn	 &	 Braun,	 1985;	 Emmons	 &	 Braun,	 1984;	
Patterson,	1952;	Schroeder	&	Robb,	2003;	Wallestad	&	Schladweiler,	
1974).	However,	sage-	grouse	may	shift	or	abandon	leks	because	of	
persistent	 disturbance	 or	 alteration	 of	 sagebrush	 cover	 (Holloran,	
Kaiser,	&	Hubert,	2010;	Walker,	Naugle,	&	Doherty,	2007).

Sage-	grouse	are	known	to	disperse	during	the	breeding	season	
and	 are	 capable	 of	 long-	distance	 breeding	 dispersal	 movements	
(Cross	 et	al.,	 2017).	 While	 the	 fashion	 of	 long-	distance	 dispersal	
movements	 is	 unknown,	 most	 migratory	 movements	 are	 made	 in	
stepping-	stone	fashion	(Tack,	2009),	and	short-	distance	abrupt	sin-
gular	movements	are	common	when	suitable	habitat	is	lacking	(Dunn	
&	Braun,	1986).

The	lek	mating	system	of	sage-	grouse	is	well	suited	to	network	
analyses	 because	 leks	 are	 fairly	 fixed	 spatial	 locations.	 Given	 the	
species’	patterns	of	dispersal,	we	would	expect	that	network	struc-
ture	should	be	composed	of	clustered,	hub	node-	like	nodes	charac-
teristic	of	a	small-	world	network	(Garroway	et	al.,	2008).

TABLE  1 Network	parameters	used	to	quantify	connectivity,	the	unit	for	which	each	is	calculated,	and	the	definition	of	the	parameter,	
and	relation	of	the	parameter	as	pertains	to	the	greater	sage-	grouse	population	network.	All	but	characteristic	path	length	and	weight	are	
centrality	indices

Network parameter Network unit Definition source Ecological interpretation

Characteristic	path	
length

Entire	network The	mean	of	all	pairwise	network	distances	
connecting	nodesb

Mean	number	of	steps	for	genetic	exchange	
among	all	nodes	along	all	possible	paths

Betweenness	
centrality

Node The	number	of	shortest	paths	upon	which	a	
particular	node	liesb

The	importance	of	node	to	maintaining	
network-	wide	genetic	exchange	along	the	
most	direct	routes

Closeness	centrality Node The	mean	shortest	path	between	node	and	all	
other	nodes	(connected	network)

Mean	number	of	steps	for	the	most	direct	path	
of	genetic	exchange	between	any	two	nodes

Clustering	
coefficient

Node The	probability	that	two	nodes	connected	to	a	
given	node	are	also	connected	(ranges	from	
0–1)b

An	index	of	genetic	connectivity	among	nodes	
that	are	both	connected	to	another	node

Degree	centrality Node The	number	of	edges	connected	to	a	nodeb The	number	of	other	nodes	with	which	a	given	
node	exchanges	genes

Eigenvector	
centrality

Node The	direct	and	indirect	connectivity:	per	node	
and	immediate	neighborsa

An	index	of	how	well	connected	a	given	nodes’	
connections	are	as	follows:	that	is,	how	much	
genetic	exchange	occurs	at	a	node’s	
immediate	connections

Strength Node The	sum	of	all	edge	weightsb An	index	of	the	magnitude	of	genetic	exchange	
with	all	nodes	connected	to	a	given	node

Weight Edge The	magnitude	of	covariance	between	con-
nected	nodes

The	magnitude	of	genetic	exchange	between	
any	two	connected	nodes

aGarroway	et	al.	(2008).
bNewman	(2006).

F IGURE  1 A	male	greater	sage-	grouse	(Centrocercus 
urophasianus)	displays	on	a	lek	in	the	early	morning.	Photograph	
credit:	Rick	McEwan
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New	connectivity	insights	would	come	at	a	critical	time	for	sage-	
grouse.	In	2010,	sage-	grouse	were	added	to	the	federal	Endangered	
Species	Act	(ESA)	candidate	list	following	several	petitions	for	pro-
tection	(U.S.	Fish	and	Wildlife	Service	2010).	In	September	2015,	a	
U.S.	Fish	and	Wildlife	Service	determination	found	current	efforts	
by	state	and	federal	agencies	and	other	partners	adequate	to	obviate	
the	need	for	listing.	However,	significant	conservation	challenges	re-
main,	 and	 the	 species’	 status	will	 again	be	 reviewed	 in	2020	 (U.S.	
Fish	and	Wildlife	Service	2015).	Understanding	genetic	connectivity	
is	a	critical	step	toward	comprehending	the	relationship	between	the	
distribution	and	abundance	of	extant	populations	across	fragmented	
landscapes.	Perhaps	more	importantly,	network	analysis	will	greatly	
benefit	planning	in	identifying	conservation	targets	with	the	great-
est	benefit	to	maintaining	genetic	connectivity.

In	 this	 study,	we	had	 two	primary	objectives.	 First,	we	 sought	
to	 determine	 the	 network	 structure	 of	 connectivity	 among	 leks,	
weighting	edges	by	genetic	divergence	based	on	genetic	covariance	
among	leks.	Second,	we	sought	to	identify	which	leks	were	import-
ant	 to	maintaining	overall	population	connectivity	and	persistence	
using	network	centrality	 indices.	Within	 this	 second	objective,	we	
also	 sought	 to	 identify	 keystone	 nodes,	 that	 is,	 nodes	 that	 act	 as	
more	important	to	maintaining	gene	flow	than	their	size	or	location	
within	the	species	range	alone	would	indicate.

2  | METHODS

2.1 | Study area and sampling

We	used	16,420	spatially	referenced	sage-	grouse	feather	and	blood	
samples	 collected	 from	2,139	 leks	 (mean	of	 7.68	 samples	 per	 lek)	
across	 the	 entire	 contiguous	 range	 of	 the	 species	 in	 the	 United	
States	of	America	and	Canada	from	2005	to	2015.	The	spatial	dis-
tribution	of	our	sampling	was	optimized	as	described	in	Hanks	et	al.	

(2016),	following	a	smaller	pilot	sample.	Feather	samples	were	col-
lected	from	leks	using	noninvasive	methods	(Bush,	Vinsky,	Aldridge,	
&	Paszkowski,	2005;	Segelbacher,	2002)	after	having	been	dropped	
by	sage-	grouse	during	breeding	activity,	while	blood	samples	were	
collected	 from	sage-	grouse	on	 leks	as	part	of	 radiotelemetry	 field	
research.	The	only	location	throughout	the	entire	distribution	of	the	
species	that	we	did	not	use	was	Washington	State	because	samples	
from	 this	 location	 were	 collected	 during	 a	 different	 period	 (from	
1992	to	1999)	than	the	rest	of	the	samples.

2.2 | DNA extraction

Genetic	 analysis	was	 conducted	 at	 two	molecular	biological	 labo-
ratories:	 the	 National	 Genomics	 Center	 for	 Wildlife	 and	 Fish	
Conservation	 at	 the	USFS	 Rocky	Mountain	 Research	 Station	 and	
the	Molecular	Ecology	Lab	at	the	USGS	Fort	Collins	Science	Center.	
Protocols	were	established	at	the	inception	of	the	study	to	ensure	
consistency	among	laboratory	genotyping	and	are	described	below.	
Feather	DNA	was	extracted	from	the	quill	(calamus)	using	QIAGEN	
DNeasy	Blood	and	Tissue	Kit	and	the	user-	developed	protocol	for	
purification	of	total	DNA	from	nails,	hair,	or	feathers.	The	protocol	
was	modified	by	incubating	samples	for	a	minimum	of	8	h	after	ad-
dition	of	Proteinase	K	to	maximize	tissue	lysis	and	by	eluting	DNA	
with	100	μl	of	Buffer	AE	to	increase	the	final	DNA	concentration	in	
the	eluate.	Blood	samples	were	extracted	using	QIAGEN		DNeasy	
Blood	and	Tissue	Kit	and	the	protocol	for	nucleated	blood.	At	USGS,	
parts	 of	 the	 extraction	process	were	 automated	using	 a	QIAcube	
(Qiagen).

2.3 | Microsatellite DNA amplification  
and genotyping

We	based	our	analysis	upon	a	panel	of	neutral,	polymorphic	micros-
atellite	loci	both	to	identify	individuals	from	noninvasively	collected	
samples	(of	unknown	individual	origin)	and	to	quantify	relatedness	
(i.e.,	functional	movement	resulting	in	gene	flow).	We	amplified	15	
variable	microsatellite	 loci	 (BG6,	SGMS064,	SGMS066,	SGMS068,	
MSP11,	 MSP18,	 SG28,	 SG29,	 SG36,	 SG39,	 SGCA5,	 SGCA11,	
SGCTAT1,	 TUT3,	 and	 TUT4)	 and	 one	 sex-	diagnostic	 locus	 [CHD	
gene,	using	the	primers	1237L	and	1272H	(Kahn,	St.	John,	&	Quinn,	
1998)].	Primer	design,	PCR	conditions,	and	electrophoresis	used	at	
USFS	and	USGS	are	detailed	in	Cross,	Naugle,	Carlson,	and	Schwartz	
(2016);	Cross	et	al.	(2017)	and	Row	et	al.	(2015).

To	ensure	correct	genotyping	from	low-	quality	and	low-	quantity	
feather	DNA	samples,	each	sample	was	PCR-	amplified	twice	across	
the	15	variable	microsatellite	loci	to	screen	for	allele	dropout,	stut-
ter	artifacts,	and	false	alleles	 (DeWoody,	Nason,	&	Hipkins,	2006).	
To	minimize	genotyping	error,	at	 least	 two	 independent	observers	
scored	each	sample.	If	any	locus	failed	to	amplify	in	either	replicate	
or	 if	 there	was	 a	discrepancy	between	 locus	 genotypes	 as	 scored	
by	 the	 two	observers,	PCR	amplification	and	genotyping	were	 re-
peated	twice	more.	If	a	genotype	was	confirmed	by	this	repeat	anal-
ysis,	then	it	was	retained.	If	a	genotype	failed	again,	the	sample	was	

TABLE  2 Sample	summary	listed	by	U.S.	state	or	Canadian	
province	for	all	samples	used	to	construct	range-	wide	greater	
sage-	grouse	genetic	network.	Total	individuals	sampled	per	state/
province,	leks	sampled	per	state/province,	and	total	number	of	
nodes	per	state/province

State/Province Individuals Leks sampled Nodes

CA 53 14 6

CAN	(SASK) 6 2 1

CO 679 106 38

ID 988 281 80

MT 1881 358 130

ND 7 2 1

NV 430 116 45

OR 296 52 31

SD 75 15 6

UT 607 114 44

WY 902 120 76
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assigned	a	missing	score	at	the	failed	locus.	To	ensure	consistency	
among	laboratories,	both	laboratories	genotyped	the	same	70	indi-
viduals	(approximately	1%	of	the	retained	genotypes).	Each	laborato-
ry’s	genotypes	for	these	individuals	were	compared,	and	necessary	
shifts	to	synchronize	allele	calls	were	made	for	all	samples.

To	screen	samples	for	quality	control,	we	removed	from	analy-
sis	any	 individual	 for	which	amplification	failed	at	one-	third	of	 the	
loci	(i.e.,	five	loci).	After	removal	of	poor-	quality	samples,	genotypes	
were	 screened	 to	 ensure	 consistency	 between	 allele	 length	 and	
length	 of	 the	 microsatellite	 repeat	 motif	 using	 MICROCHECKER	
v2.2.3	 (Van	 Oosterhout,	 Hutchinson,	 Wills,	 &	 Shipley,	 2004).	 To	
identify	 and	 remove	multiple	 captures	 of	 the	 same	 individual	 and	
to	 screen	 for	 and	 correct	 genotyping	 error,	 we	 used	 DROPOUT	
2.3	(McKelvey	&	Schwartz,	2005	as	implemented	in	Schwartz	et	al.	
2006),	MICROCHECKER	v2.2.3	 (Van	Oosterhout	et	al.,	2004),	and	
package	ALLELEMATCH	2.5	(Galpern,	Manseau,	Hettinga,	Smith,	&	
Wilson,	2012)	 in	program	R	3.3.0	 (R	Core	Team	2016).	Finally,	we	
quantified	the	power	of	our	microsatellite	locus	panel	to	discern	in-
dividuals	using	probability	 identity	 (PID;	Evett	&	Weir,	1998)	which	
calculates	the	probability	that	two	individuals	drawn	at	random	from	
the	population	have	the	same	genotype	across	all	loci.

2.4 | Network construction

A	minimum	of	four	or	more	individuals	per	node	is	required	to	calcu-
late	within-	node	genetic	variation	(Dyer,	2014b).	Therefore,	before	
constructing	 the	 network,	 we	 performed	 a	 hierarchical	 clustering	
analysis	of	 lek	locations.	First,	we	calculated	a	distance-	based	tree	
using	the	geographic	coordinates	for	the	leks	from	which	the	6,242	
individual	 samples	 were	 collected	 (using	 the	 HCLUST	 function	 in	
base	R).	Second,	we	clustered	all	lek	locations	within	15	km	of	one	
another	 (cut	 distance	 implemented	 using	 the	CUTREE	 function	 in	
base	R).	We	selected	15	km	as	the	cut	distance,	as	this	 is	the	best	
estimate	of	median	breeding	dispersal	distance	among	leks	for	sage-	
grouse	(Cross	et	al.,	2017).	Third,	we	removed	any	resultant	clusters	
of	leks	composed	of	fewer	than	four	individuals.

Following	clustering,	we	constructed	a	weighted	population	net-
work	among	the	resulting	clusters,	which	we	henceforth	refer	to	as	
nodes.	For	all	clustered	samples	and	for	all	nodes,	we	calculated	the	
mean	and	standard	deviation	for	number	of	alleles	per	locus,	effec-
tive	number	of	alleles,	expected	and	observed	heterozygosity,	and	
FIS.	We	 estimated	 genetic	 covariance	 among	nodes,	where	micro-
satellite	genetic	covariance	represents	the	weight	of	each	network	
edge	 connecting	 nodes.	 We	 used	 the	 packages	 GSTUDIO	 (Dyer,	
2014a)	and	POPGRAPH	(Dyer,	2014b)	in	program	R	to	estimate	the	
conditional	 genetic	 covariance	 network	 following	 the	methods	 of	
Dyer	and	Nason	(2004)	using	default	parameters	(α	=	0.05	and	tol-
erance	=	1	×	10−4;	Garroway	 et	al.,	 2008).	 Following	 pruning	 using	
the	recommended	settings,	 the	resultant	minimal	 incidence	matrix	
contained	 the	 smallest	 set	 of	 edges	 that	 sufficiently	 capture	 the	
among-	node	 genetic	 covariance	 structure	 (Dyer	 &	 Nason,	 2004).	
We	also	calculated	the	minimum	spanning	tree,	which	is	the	subset	
of	network	edges	that	connect	all	nodes	together	with	the	maximum	

genetic	covariance	among	nodes	(edge	weight),	without	any	cycles.	
To	test	for	structure	within	the	minimum	spanning	tree,	we	tested	
for	correlation	between	weighted	(factoring	genetic	covariance)	dis-
tances	among	nodes	in	the	minimum	spanning	tree	and	geographic	
distance	 (great	 circle	 distance)	 among	 all	 nodes	 calculated	 using	
the	RDIST.EARTH	function	in	the	FIELDS	package	(Nychka,	Furrer,	
Paige,	&	Sain,	2015)	in	R.

2.5 | Network structure determination

To	determine	the	network	structure,	we	compared	the	degree	distri-
bution,	clustering	coefficient,	and	characteristic	path	length	of	the	
sage-	grouse	 genetic	 network	 to	 that	 of	 1000	 Erdos–Renyi	 model	
random	networks	with	the	same	number	of	nodes,	edges,	and	edge	
weight	distribution	as	the	range-	wide	sage-	grouse	genetic	network.	
The	characteristic	path	length	is	defined	as	the	average	shortest	path	
length	between	all	pairs	of	nodes	in	the	network,	and	it	provides	an	
understanding	of	how	long	it	takes	alleles	to	traverse	the	network.	
We	generated	the	random	networks	using	package	IGRAPH	(Csardi	
&	Nepusz,	2006)	in	program	R	and	tested	for	significant	differences	
between	the	degree	distribution,	clustering	coefficient,	and	charac-
teristic	 path	 length	of	 the	 true	 sage-	grouse	network	 and	 the	 ran-
dom	 networks	 using	 permutation	 tests,	 following	 the	methods	 of	
Garroway	et	al.	 (2008).	We	used	 the	 results	of	 these	comparisons	
to	determine	whether	network	structure	was	purely	a	 function	of	
the	number	of	nodes	and	edges	or	whether	network	structure	was	
a	result	of	nonrandom	processes.	For	example,	if	we	found	a	char-
acteristic	path	length	that	did	not	deviate	significantly	from	that	of	
the	random	networks	coupled	with	a	significantly	higher	clustering	
coefficient	than	that	of	the	random	networks,	 then	we	could	con-
clude	that	the	network	had	small-	world	or	scale-	free	characteristics	
(Watts	&	Strogatz,	1998).	Furthermore,	if	we	found	a	degree	distri-
bution	that	did	not	follow	the	power	law	(which	would	indicate	scale-	
free	 network),	 was	 not	 binomial	 (which	 would	 indicate	 a	 random	
network)	or	fixed	(which	would	indicate	a	regular	network),	but	in-
stead	that	was	fat-	tailed,	we	would	conclude	that	the	likely	network	
structure	was	that	of	the	hub	node-	and-	spoke	small-	world	network.

We	quantified	 pairwise	 conditional	 genetic	 distance	 among	 all	
nodes.	 Conditional	 genetic	 distance	 is	 the	 length	 of	 the	 shortest	
path	connecting	each	pair	of	nodes	conditioned	on	network	struc-
ture	 (Dyer,	Nason,	&	Garrick,	2010)	or	the	relative	strength	of	the	
genetic	 covariance	 between	 nodes	 along	 the	 connecting	 edges	
(Koen,	 Bowman,	 Garroway,	 &	Wilson,	 2013).	 When	 compared	 to	
geographic	distance	among	nodes,	conditional	genetic	distance	can	
provide	 insight	 into	network	structure.	For	example,	 if	 conditional	
genetic	 distance	 is	 correlated	 with	 geographic	 distance,	 one	 can	
conclude	that	the	process	of	isolation	by	distance	shaped	a	genetic	
network	(Dyer	et	al.,	2010).

We	 calculated	 six	 centrality	 indices	 (Table	1)	 and	 used	 these	
metrics	to	quantify	connectivity	and	relative	isolation	of	each	node	
across	 the	 network.	 To	 calculate	 standard	 error	 (SE)	 of	 the	mean	
and	 median	 as	 well	 as	 their	 respective	 95%	 confidence	 intervals	
(CI),	we	calculated	1000	resampled	networks	of	75%	of	the	nodes.	
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Betweenness	 centrality	 quantifies	 the	 importance	 of	 a	 node	 in	
terms	 of	 the	 bottleneck	 to	 gene	 flow	 it	 creates,	 eigenvector	 cen-
trality	quantifies	how	connected	a	node	is,	and	strength	quantifies	
how	strong	the	connection	is	between	a	node	and	all	its	neighboring	
nodes	(Garroway	et	al.,	2008).	Eigenvector	centrality	is	an	index	of	
both	how	well	a	node	is	connected	and	how	well	a	node’s	immedi-
ate	connections	are	connected—in	essence,	measuring	both	direct	
and	 indirect	 connectivity.	 These	 properties	 make	 eigenvector	 a	
better	 index	 than	 betweenness	 if	 one	 is	 interested	 in	 quantifying	
the	 strength	 of	 connections.	 This	 is	 because	 eigenvector	 central-
ity	 increases	 not	 only	 just	 with	 increased	 immediate	 connectivity	
of	the	node	of	interest,	but	also	the	immediate	connectivity	of	the	
nodes	to	which	the	node	of	interest	is	connected.	When	quantifying	
connectivity,	we	used	the	centrality	 index	of	node	strength	rather	
than	node	degree,	 as	Koen	et	al.	 (2015)	 found	 that	 strength	more	
adequately	depicts	migration	and	gene	flow	than	degree	centrality.	
To	 examine	 relationships	 between	 network	 centrality	 indices,	 we	
tested	for	pairwise	correlation	between	all	indices	using	Spearman’s	
rank	correlation.	We	also	tested	for	correlation	between	each	net-
work	centrality	index	and	mean	peak	male	count	per	node	(calcula-
tion	described	below).	All	network	centrality	indices	were	calculated	
using	the	IGRAPH	package	in	R,	and	all	correlations	were	calculated	
in	base	R.

To	 identify	 hub	 nodes	 of	 genetic	 exchange,	 we	 screened	 all	
nodes	within	the	top	1%	of	each	network	centrality	index	(Table	1),	
and	within	 the	 top	50%	of	all	node	centrality	 indices	combined	 in	
order	to	identify	those	nodes	that	were	most	important	to	local	net-
work	(regional)	and	network-	wide	(range-	wide)	connectivity.	These	
nodes	represent	the	top	hub	nodes	of	genetic	exchange	that	main-
tain	connectivity	at	all	scales.	To	identify	spoke	nodes,	we	identified	
the	nodes	with	the	lowest	ranking	for	each	centrality	index.

2.6 | Keystone nodes

We	hypothesized	that	nodes	composed	of	the	most	highly	attended	
leks	and	the	most	geographically	central	nodes	in	the	species’	range	
would	 rank	 highest	 for	 centrality	 (i.e.,	 node	 abundance	 and	 range	
centrality	would	 be	 positively	 correlated	with	 node	 centrality).	 To	
calculate	abundance,	we	used	the	per-	lek	high	male	counts	recorded	
between	2005	and	2015	(WAFWA,	2015)	and	calculated	the	mean	
peak	male	count	per	node	over	these	years	using	all	leks	constitut-
ing	each	node	 (male	 lek	attendance	 is	significantly	correlated	with	
female	lek	attendance;	Bradbury	et	al.,	1989).	Using	mean	peak	male	
count,	we	tested	for	correlation	with	network	centrality	indices.

We	 defined	 range	 centrality	 as	 the	 great	 circle	 distance	 from	
the	 center	 of	 the	 geographic	 center	 of	 the	 sampling	 distribution.	

We	calculated	 range	 centrality	 as	 the	distance	of	 each	node	 from	
the	 centroid	 of	 a	 minimum	 convex	 polygon	 enveloping	 all	 nodes,	
such	 that	 increased	 magnitude	 of	 distance	 was	 equivalent	 to	 in-
verse	range	centrality.	We	calculated	the	minimum	convex	polygon	
using	the	GCONVEXHULL	function	and	calculated	the	centroid	of	
the	 minimum	 convex	 polygon	 using	 the	 GCENTROID	 function	 in	
the	RGEOS	package	(Bivand	&	Rundel,	2017)	in	R.	Finally,	we	calcu-
lated	the	distance	of	every	node	from	the	centroid	using	the	RDIST.
EARTH	function	 in	 the	FIELDS	package	 (Nychka	et	al.,	2015)	 in	R.	
Using	range	centrality,	we	tested	for	correlation	with	node	centrality	
indices.

Finally,	we	sought	to	identify	nodes	with	greater	importance	to	
genetic	 connectivity	 than	 the	magnitude	of	 lek	 attendance	within	
the	node	or	node	location	within	the	species	range	alone	might	in-
dicate.	We	call	these	nodes	keystone	nodes.	We	identified	keystone	
nodes	 as	 those	 that	 were	 low	 in	 attendance	 or	 peripheral	 to	 the	
range,	but	 that	 still	 ranked	high	 in	 centrality.	To	 identify	keystone	
nodes,	we	plotted	both	the	mean	peak	male	count	within	a	node	and	
the	 range	centrality	of	each	node	against	each	network	centrality	
index.	We	then	called	the	outliers	of	these	plots,	keystone	nodes.

3  | RESULTS

3.1 | Genotyping and network construction

After	 genotyping	 the	 same	 70	 individuals	 at	 each	 laboratory,	 we	
compared	allele	calls.	For	two	loci,	the	laboratories	had	a	two	base	
pair	difference	across	all	allele	calls	(BG6	and	SGCA5),	for	one	locus,	
there	 was	 a	 four	 base	 pair	 difference	 (SGCA11),	 and	 for	 another	
locus,	a	seven	base	pair	difference	(SGCTAT1)	as	well	as	two	alleles	
called	off-	step	on	a	dimer	repeat	motif	changed	to	comply	with	the	
tetramer	 repeat	motif.	Each	 laboratory’s	genotypes	 for	 these	 indi-
viduals	were	 shifted	 to	 synchronize	 allele	 calls	 for	 all	 samples	 for	
these	loci.	With	the	additional	ALLELEMATCH	analysis,	we	discov-
ered	no	additional	multiple	matches	 (identical	 genotypes	 resulting	
from	 the	 same	 sample	 being	 genotyped	by	 both	 laboratories).	 PID 
for	 the	 complete	 microsatellite	 panel	 was	 2.20	×	10-22,	 providing	
evidence	that	our	microsatellite	panel	was	adequate	for	distinguish-
ing	individuals.	Our	genotyping	efforts	resulted	in	6,729	individual	
genotypes	from	1,388	leks	(median	=	3	individuals	per	lek,	IQR	=	4	
individuals	per	lek,	range	=	1–62	individuals	per	lek)	following	dupli-
cate	removal	and	quality	control.

Hierarchical	 clustering	 and	 removal	 of	 nodes	 with	 fewer	 than	
four	 individuals	 yielded	 5,924	 samples	 from	 1,180	 leks	 clustered	
into	 458	 nodes	 from	 2006	 to	 2015	 (median	=	10	 individuals	 per	
node,	IQR	=	7.00–15.75,	range	=	4–90	individuals	per	node,	Table	2).	

F IGURE  2 The	greater	sage-	grouse	range-	wide	genetic	network	minimum	spanning	tree.	The	minimum	spanning	tree	is	pruned	such	that	
only	the	most	highly	weighted	edges	(i.e.,	the	connections	representative	of	the	greatest	genetic	covariance)	are	shown	between	all	nodes	
(n = 458).	Distance	among	nodes	in	the	minimum	spanning	tree	was	highly	correlated	with	geographic	distance	between	nodes	(rs	=	0.61,	
p < 2.2	×	10−16).	(a)	Fruchterman-	Reingold	plot	(layout	with	minimal	edge	overlap).	(b)	Geographic	map	of	the	range-	wide	greater	sage-	grouse	
genetic	network	nodes	connected	by	edges	retained	within	the	minimum	spanning	tree.	Node	color	indicates	geographic	location	by	state.	
Edges	are	shown	as	black	lines.	The	species’	range	is	shown	as	light	gray	polygons
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We	were	able	to	use	1,057	mean	peak	male	counts	for	399	nodes.	
For	all	 clustered	samples	and	across	all	nodes,	average	number	of	
alleles	was	17.0	±	7.48	(mean	±	SD)	and	6.43	±	1.47,	for	the	effective	
number	of	alleles	was	7.30	±	2.88	and	4.41	±	0.75,	for	expected	het-
erozygosity	was	0.84	±	0.06	and	0.74	±	0.05,	for	observed	heterozy-
gosity	was	0.78	±	0.05,	and	for	FIS	was	0.07	±	0.02	and	−0.06	±	0.06.	
We	constructed	a	network	composed	of	458	nodes	connected	by	
14,481	 edges.	 The	 minimum	 spanning	 tree	 (Figure	2a)	 was	 cor-
related	with	geographic	distance	(rs	=	0.61,	p < 2.2	×	10−16).	Montana	
nodes	compose	a	large	group	within	the	minimum	spanning	tree	and	
are	 joined	 to	 the	 rest	 of	 the	 network	 through	 nodes	 in	Wyoming	
and	 Idaho	 (Fig	2).	Nodes	 in	Colorado	 also	 group	 together	 and	 are	
linked	by	nodes	in	Wyoming	and	Utah	(Figure	2).	There	was	strong	
evidence	for	a	positive	correlation	between	conditional	genetic	dis-
tance	and	geographic	distance	(Table	4).

3.2 | Network structure determination

The	sage-	grouse	genetic	network	deviated	from	random	network	struc-
ture	in	both	mean	clustering	coefficient	and	mean	characteristic	path	
length.	Both	indices	were	significantly	greater	for	the	sage-	grouse	ge-
netic	network	than	for	the	1000	random	networks	with	the	same	num-
ber	of	nodes,	edges,	and	edge	weight	distribution	as	the	sage-	grouse	
network;	none	of	the	random	networks	had	a	greater	mean	clustering	

coefficient	or	characteristic	path	length	than	the	sage-	grouse	network	
(clustering	 coefficient:	 p < .001,	 characteristic	 path	 length:	 p < .001).	
Both	the	mean	clustering	coefficient	(0.19	±	3.35	×	10−3	[SE])	and	the	
mean	characteristic	path	 length	 (1.88	±	7.04	×	10−3	 [SE],	 [1.88,	1.91])	
were	short,	and	the	node	degree	distribution	was	fat-	tailed	(Figure	4d).

3.3 | Node properties

In	order	to	describe	node	location,	we	used	USGS	hydrologic	cata-
loging	units,	also	known	as	watersheds	(https://water.usgs.gov/GIS/
metadata/usgswrd/XML/huc250k.xml).	We	 discovered	 hub	 nodes	
within	the	C.J.	Strike	Reservoir	watershed	in	Idaho	and	the	Big	Horn	
Lake	and	Upper	Green-	Slate	watersheds	in	Wyoming.	These	nodes	
rank	highly	across	multiple	 centrality	 indices	 indicating	 the	 impor-
tance	 of	 these	 regions	 to	maintaining	 genetic	 connectivity	 across	
the	 network.	 Collectively,	 these	 two	 basins	 contained	 nodes	with	
the	maximum	centrality	indices	(Figure	3).	Many	other	regions	con-
tained	hub	nodes	as	determined	with	one	or	more	centrality	indices.	
Notably,	the	Big	Horn	Lake	watershed	in	Wyoming,	the	Bullwhacker-	
Dog	and	Middle	Musselshell	watersheds	 in	Montana,	 the	Fremont	
watershed	in	Utah,	and	the	Middle	Snake-	Succor	watershed	in	Idaho	
and	Oregon	contain	nodes	that	rank	high	for	centrality	indices	indic-
ative	of	their	functioning	as	hub	nodes	that	maintain	local	connectiv-
ity.	The	Crazy	Woman	watershed,	the	Upper	Green-	Slate	watershed,	

F IGURE  3 The	top	1%	of	nodes	for	each	of	the	six	centrality	indices	(n = 20	per	index).	Nodes	in	the	top	1%	of	more	than	one	index	are	
offset	to	the	left	or	right	to	reveal	both.	Node	color	indicates	centrality	measure.	Shaded	polygons	depict	the	watershed	within	which	these	
top-	ranking	nodes	are	located.	The	species’	range	is	shown	as	light	gray	polygons
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and	 the	 Middle	 North	 Platte-	Casper	 watershed	 in	Wyoming,	 the	
Lake	Walcott	watershed	in	Idaho,	and	the	Upper	Bear	watershed	in	
Utah	all	contain	nodes	that	rank	high	for	centrality	indices	indicative	
of	their	functioning	as	hub	nodes	that	maintain	network-	wide	con-
nectivity	(Figure	3).

Only	 five	nodes	 ranked	 in	 the	 top	50th	percentile	of	 all	 net-
work	 centrality	 indices,	 indicating	 their	 importance	 to	 genetic	
connectivity	both	locally	and	network-	wide	as	well	as	the	rarity	of	
this	combination	of	local	and	network-	wide	importance.	The	range	
of	each	centrality	 index	for	 these	hub	nodes	was	 large	 (Table	3).	
These	 nodes	were	 located	within	 the	 Idaho	 Falls,	 Lake	Walcott,	
and	 Salmon	 Falls	 watersheds	 in	 Idaho,	 and	 the	 Middle	 North	
Platte-	Casper	and	Sweetwater	watersheds	in	Wyoming	(Figure	3);	
locations	central	to	both	the	sampling	extent	and	the	geographic	
range	of	the	species.

Nodes	with	high	betweenness	centrality	act	as	bridges	between	
different	parts	of	the	network,	so	their	loss	can	have	network-	wide	
impacts	on	genetic	connectivity	 (Garroway	et	al.,	2008).	We	 iden-
tified	several	hub	nodes	whose	betweenness	ranking	was	high,	 lo-
cated	toward	the	center	of	the	species’	range.	Three	of	the	top	1%	of	
nodes	ranked	by	betweenness	centrality	were	located	in	Wyoming—
one	 in	 the	 Crazy	 Woman	 watershed,	 one	 in	 the	 Middle	 North	
Platte-	Casper,	and	one	in	the	Upper	Green-	Slate	watershed.	Of	the	
remaining	two	nodes,	one	was	 located	 in	 the	Lake	Walcott	water-
shed	in	Idaho,	and	one	was	located	in	the	Upper	Bear	watershed	in	

Utah	(Figure	3).	Of	these,	the	node	with	the	greatest	betweenness	
(1491)	was	 located	 just	south	of	Grand	Teton	National	Park	 in	the	
Upper	 Green-	Slate	 watershed.	 This	 same	 node	 also	 indexed	 high	
for	 strength	 (700.89).	Most	nodes	 in	 the	network	were	 important	
to	 network-	wide	 connectivity	 (right-	skewed	 distribution:	 Table	3,	
Figure	4).	However,	seventeen	nodes	had	a	betweenness	of	zero,	in-
dicating	relatively	low	importance	to	fostering	genetic	connectivity	
across	the	network.	These	spoke	nodes	had	an	average	strength	of	
429.2	 (±218.3	 [SD]),	 indicating	 strong	 connections	 to	 other	 nodes	
despite	low	importance	to	network-	wide	genetic	connectivity.	Many	
of	these	spoke	nodes	with	the	lowest	betweenness	indices	were	lo-
cated	toward	the	periphery	of	the	species’	range.

To	identify	nodes	that	covaried	the	greatest	with	all	other	nodes	
in	the	network,	we	ranked	nodes	by	closeness	centrality.	Closeness	
is	 an	 index	 of	 the	 average	 shortest	 path	 between	 a	 node	 and	 all	
other	nodes	in	the	network.	Hence,	a	smaller	closeness	index	indi-
cates	shorter	paths	on	average,	and	therefore,	greater	connectivity.	
There	were	a	small	number	of	very	closely	covarying	nodes	 in	the	
network	(left-	skewed	distribution:	Table	3,	Figure	4).	The	top-	ranked	
closeness	nodes	were	central	to	the	species’	range,	away	from	the	
periphery.	Two	of	 the	nodes	 in	 the	 top	1%	of	closeness	centrality	
were	located	in	the	Lake	Walcott	watershed	in	Idaho.	The	remain-
ing	nodes	were	 located	 in	 the	Little	Snake	watershed	 in	Colorado	
and	the	Sweetwater	and	Upper	Green-	Slate	watersheds	in	Wyoming	
(Figure	3).	The	node	with	the	minimum	closeness	(4.91	×	10−5)	was	

TABLE  3 Network	centrality	indices	(betweenness,	closeness,	clustering	coefficient,	degree,	and	eigenvector)	and	network	connectivity	
(strength	and	weight)	for	the	range-	wide	greater	sage-	grouse	genetic	network	(a)	and	networks	(b)	calculated	from	1000	networks	
constructed	from	a	resample	of	75%	(n = 343	nodes)	of	the	originally	sampled	458	nodes	(sampled	without	replacement).	Listed	are	the	
network	centrality	index,	the	component	for	which	each	index	was	calculated,	minimum,	mean,	median,	standard	error	(SE)	of	the	mean	and	
median,	and	95%	confidence	intervals	(CI)	of	the	mean	and	median

(a)

Centrality index Component Min Mean ± SD Median (IQR) Max

Betweenness	centrality Node 0.00 203.60	±	249.63 90.50	(29.25–270.50) 1491.00

Closeness	centrality Node 4.91	×	10−5 1.34	×	10−4	±	1.51	×	10−5 1.37	×	10−4 
(1.28	×	10−4–1.45	×	10−4)

1.59	×	10−4

Clustering	coefficient Node 0.12 0.19	±	0.022 0.18	(0.17–0.20) 0.33

Eigenvector	centrality Node 0.07 0.55	±	0.18 0.57	(0.43–0.69) 1.00

Strength Node 88.19 619.10	±	181.51 634.70	(488.60–752.50) 1085.00

Weight Edge 3.02 9.82	±	2.23 9.68	(8.42–11.00) 35.61

(b)

Centrality index Component

Resampled networks

Mean ± SE [95% CI] Median ± SE [95% CI]

Betweenness	centrality Node 155.77	±	1.28	[153.28,	158.26] 87.00	±	4.87	[78.00,	98.00]

Closeness	centrality Node 1.75	×	10-4	±	1.83	×	10-6	[1.71	×	10-4,	
1.78	×	10-4]

1.78	×	10-4	±	1.87	×	10-6	[1.75	×	10-4,	
1.82	×	10-4]

Clustering	coefficient Node 0.18	±	0.0032	[0.18,	0.19] 0.18	±	0.0032	[0.17,	0.19]

Eigenvector	centrality Node 0.55	±	0.025	[0.49,	0.59] 0.56	±	0.027	[0.50,	0.60]

Strength Node 449.46	±	8.82	[431.19,	466.40] 455.71	±	10.22	[435.06,	475.58]

Weight Edge 9.86	±	0.066	[9.74,	9.99] 9.74	±	0.069	[9.60,	9.87]
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located	 in	 the	 Spring-	Steptoe	 Valleys	 watershed	 in	 Nevada	 and	
had	 low	betweenness	 (0).	The	node	with	the	greatest	closeness	 in	
the	 network	 (1.59	×	10−4)	 was	 located	 just	 south	 of	 Grand	 Teton	
National	Park	in	the	Upper	Green-	Slate	watershed	in	Wyoming	and	
had	a	relatively	high	betweenness	(1521)	and	strength	(700.89).

To	identify	nodes	that	anchor	tightly	knit	groups	connected	by	
a	high	number	of	edges,	we	examined	node	rankings	by	clustering	
coefficient.	 Increased	 clustering	 coefficient	 is	 indicative	 of	 small-	
world	 characteristics.	Network-	wide,	 there	was	 a	 low	chance	 that	
any	two	nodes	connected	to	a	given	node	were	also	connected	to	

one	another	(right-	skewed	distribution:	Table	3,	Figure	4).	The	nodes	
in	the	top	1%	of	clustering	coefficient	were	found	across	the	species’	
range	and	were	mostly	toward	 its	periphery	 (Figure	3).	The	south-
ernmost	hub	node	in	the	top	1%	was	in	the	Fremont	watershed	in	
Utah.	Other	hub	nodes	in	the	top	1%	of	centrality	were	located	in	
the	 Middle	 Snake-	Succor	 watershed	 in	 Idaho,	 the	 Big	 Horn	 Lake	
watershed	 in	Wyoming,	 and	 the	 Bullwhacker-	Dog	 watershed	 and	
Middle	Musselshell	watershed	in	Montana.	The	hub	node	with	the	
greatest	clustering	coefficient	(0.33)	was	found	in	the	Middle	Snake-	
Succor	watershed.	This	node	also	had	low	betweenness	(0),	strength	

F IGURE  4 Centrality	index	distributions	for	all	nodes	(a–f;	n = 458)	and	edges	(g;	n = 14,433)	in	the	greater	sage-	grouse	genetic	network.	
The	solid	vertical	black	line	shows	the	median	for	each	index
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(223.65),	 and	 eigenvector	 centrality	 (0.21).	 The	 spoke	 node	 with	
the	lowest	clustering	coefficient	(0.12)	was	found	in	the	Shoshone	
watershed	in	northcentral	Wyoming	and	had	low	betweenness	(7),	
strength	(327.34),	and	eigenvector	centrality	(0.25).

To	identify	the	most	highly	networked	nodes,	we	examined	node	
rankings	by	eigenvector	centrality.	Eigenvector	centrality	increases	
for	 nodes	 that	 are	 highly	 connected	 to	 other	 highly	 connected	
nodes.	All	 but	one	of	 the	 top	one	percent	of	nodes	 ranked	by	ei-
genvector	centrality	were	located	in	the	Great	Basin,	indicating	in-
creased	genetic	connectivity	therein.	These	hub	nodes	are	located	in	
the	Crowley	Lake	watershed	in	California,	the	Lake	Abert	watershed	
in	Oregon,	the	Diamond-	Monitor	Valleys	watershed	in	Nevada,	and	

the	Upper	Malheur	watershed	 in	Oregon	(Figure	3).	The	exception	
was	a	single	node	outside	the	Great	Basin	in	the	C.J.	Strike	Reservoir	
watershed	 in	 Idaho.	 This	 hub	 node	 had	 the	 greatest	 eigenvector	
centrality	(1.00)	and	had	very	high	strength	(1064.07),	but	very	low	
betweenness	centrality	(3).	The	spoke	node	with	the	lowest	eigen-
vector	centrality	(0.067)	was	located	in	the	Escalante	Desert	water-
shed	in	Utah	and	was	a	terminal	node	on	the	minimum	spanning	tree.	
This	spoke	node	was	also	low	for	strength	(88.2)	and	betweenness	
(69):	low	centrality	both	locally	and	network-	wide.	Eigenvector	cen-
trality	was	normally	distributed	(Table	3,	Figure	4).

To	 determine	 which	 nodes	 covaried	 closely	 with	 many	 other	
nodes,	 we	 calculated	 the	 strength	 of	 each	 node.	 The	 top	 1%	 of	
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nodes	ranked	by	strength	was	located	toward	the	range	periphery	
in	both	the	central	and	southwestern	part	of	the	species’	range,	in-
dicating	 increased	 genetic	 covariance	 among	 a	 greater	 number	 of	
nodes	(Figure	3).	Of	the	hub	nodes	with	the	greatest	strength,	one	
hub	node	was	 in	the	Crowley	Lake	watershed	 in	California,	one	 in	
the	Diamond-	Monitor	Valleys	watershed	in	Nevada,	one	in	the	C.J.	
Reservoir	Strike	watershed	in	Idaho,	one	in	the	Provo	watershed	in	
Utah,	and	one	in	the	Upper	Green	watershed	in	Wyoming.	All	five	
of	the	top	1%	of	nodes	by	strength	were	terminal	nodes	on	the	min-
imum	spanning	tree.	The	nodes	with	the	greatest	and	least	strength	
(1085.0	and	88.2),	located	in	the	C.J.	Strike	Reservoir	watershed	in	
Idaho	and	the	Escalante	Desert	watershed	in	Utah,	were	also	simi-
larly	ranked	for	eigenvector	centrality	(two	indices	for	which	there	
was	very	strong	evidence	for	a	positive	correlation	(Table	4)).	Node	
strength	was	normally	distributed	(Table	3,	Figure	4).

We	found	evidence	for	a	strongly	positive	significant	correla-
tion	 between	 betweenness	 and	 closeness,	 and	 eigenvector	 and	
strength	 (Table	4).	 All	 other	 significant	 correlations	 among	 cen-
trality	 indices	were	weak	and	negative.	We	found	evidence	for	a	
strongly	positive	significant	correlation	between	number	of	alleles	
per	node	and	betweenness	and	closeness,	although	all	other	signif-
icant	correlations	were	moderately	negative	or	weak	and	positive.	
The	evidence	for	a	correlation	between	mean	peak	male	count	and	
centrality	indices	was	weak	when	significant.	Finally,	we	found	ev-
idence	for	a	strongly	positive	significant	correlation	between	the	
number	of	samples	in	a	node	and	betweenness,	but	only	moderate	
or	weak	relationships	when	testing	for	correlation	with	other	cen-
trality	indices.

3.4 | Edge properties

Edge	weight	is	an	index	of	the	magnitude	of	genetic	covariance	be-
tween	nodes	and	can	be	used	to	identify	nodes	most	closely	linked.	
Overall,	genetic	connectivity	among	nodes	has	led	to	increased	net-
work	 connectivity,	with	 the	occurrence	of	 some	highly	 connected	
nodes	 evidenced	 by	 a	 skewed	 right	 distribution	 of	 edge	 weight	
(Table	3;	Figure	4).	The	top	0.1%	of	edges	with	the	greatest	genetic	
covariance	 emanated	 from	 a	 node	 in	 the	 Spring-	Steptoe	 Valleys	
watershed	in	Nevada.	This	node	also	has	the	lowest	closeness	cen-
trality	and	low	eigenvector	centrality	(0.33)	and	very	low	between-
ness	(0).	The	edge	of	least	weight	connected	two	nodes	within	the	
Fremont	watershed	in	Utah	(in	the	southcentral	UT	group	of	nodes	
in	Figure	3).	This	node	was	of	moderate	importance	to	network-	wide	
connectivity	(betweenness:	115),	but	had	low	connectivity	to	other	
nearby	nodes	(eigenvector	centrality:	0.11).

3.5 | Keystone nodes

It	was	common	that	the	hub	nodes—those	with	the	highest	central-
ity	 rankings—were	 also	 those	 with	 lower	 mean	 peak	 male	 count	
(Figure	5).	There	was	 strong	evidence	 for	 a	weak	positive	 correla-
tion	between	mean	peak	male	count	and	eigenvector	centrality	and	
mean	peak	male	count	and	strength	and	strong	evidence	for	weak	TA
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F IGURE  5 Relationships	between	centrality	index	(y-	axis)	and	mean	peak	male	count	per	node	(x-	axis).	Red	circles	envelope	keystone	
nodes.	The	fitted	linear	model	and	confidence	interval	are	shown	(blue	line	with	shaded	confidence	interval)
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negative	correlation	between	mean	peak	male	count	and	between-
ness	and	between	mean	peak	male	count	and	closeness	(Table	4	and	
Figure	5).

Across	all	centrality	indices,	we	discovered	26	nodes	that	ranked	
high	 for	 network	 centrality	 despite	 having	 lower	mean	 peak	male	
count	 than	nodes	of	 similar	 ranking	 (Figure	6).	 These	26	 keystone	
nodes	were	located	across	the	entire	species’	range.	Four	of	these	
keystone	nodes	 ranked	highly	 for	more	 than	one	 centrality	 index,	
with	high	rankings	coupled	for	eigenvector	centrality	and	strength	
and	for	closeness	and	clustering	coefficient.	In	all	cases,	these	nodes	
were	 keystone	 for	 betweenness	 and	 closeness	 or	 for	 eigenvector	
and	strength.

4  | DISCUSSION

4.1 | Emergent network properties

The	greatest	utility	of	our	network	analysis	is	its	ability	to	be	used	
to	prioritize	and	target	conservation	efforts	to	the	nodes	most	im-
portant	 to	maintaining	 network	 connectivity	 at	 any	 desired	 scale.	
Our	 network	 approach	 allows	nodes	 to	be	 ranked	 across	multiple	

centrality	indices,	indicative	of	different	scales	and	patterns	of	con-
nectivity,	each	with	unique	importance	to	conservation.

We	discovered	that	the	sage-	grouse	range-	wide	genetic	net-
work	is	best	characterized	as	hub-	and-	spoke	topology	most	re-
sembling	 the	 structure	 of	 a	 small-	world	 network	 and	 not	 that	
of	 a	 random	 or	 regular	 network.	 Both	 the	mean	 clustering	 co-
efficient	 (0.19	±	3.35	×	10−3	 [SE])	 and	 the	 mean	 characteristic	
path	 length	 (1.88	±	7.04	×	10−3	 [SE],	 [1.88,	 1.91])	 were	 shorter	
than	has	been	 reported	 for	other	 species	 (e.g.,	 0.254	and	2.26	
in	 Garroway	 et	al.,	 2008).	 The	 fat-	tailed	 distribution	 of	 node	
degree	 (Figure	4d)	confirmed	small-	world	network	structure	by	
ruling	out	scale-	free	structure,	for	which	the	degree	distribution	
follows	a	power	law.

Many	hub	nodes	of	connectivity	within	the	network	are	located	
across	the	species’	range	(Figure	3),	with	most	spoke	nodes	located	
along	 the	 periphery	 of	 the	 range.	 This	 hub-	and-	spoke	 topology	 is	
evident	 in	 the	minimum	 spanning	 tree,	with	 important	 hub	 nodes	
of	 genetic	 connectivity	 occurring	 in	 nearly	 every	 state	 across	 the	
contiguous	range	(Figure	2).	Loss	of	one	of	these	highly	connected	
hub	nodes	within	several	major	basins	could	severely	affect	overall	
network	connectivity.

F IGURE  6 Keystone	nodes	(n = 26):	nodes	with	greater	importance	to	genetic	connectivity	than	the	magnitude	of	lek	attendance	within	
the	node	or	node	location	within	the	species	range	alone	might	indicate.	These	nodes	were	low	in	mean	peak	high	male	count	relative	to	
their	network	centrality	rankings.	Points	representing	keystone	nodes	for	more	than	one	centrality	index	are	offset	to	the	left	or	right,	such	
that	these	offset	touching	points	represent	the	same	node.	Node	color	indicates	centrality	measure.	Shaded	polygons	depict	the	watershed	
within	which	these	top-	ranking	nodes	are	located.	The	species’	range	is	shown	as	light	gray	polygons
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We	documented	strong	connectivity	across	the	entire	network,	
evidenced	 by	 high-	ranking	 nodes	 and	 edges	 across	 the	 species’	
range.	This	means	that	some	of	the	nodes	may	be	able	to	recover	
should	 they	be	extirpated	but	 the	habitat	 remain	 intact	or	be	re-
stored	 (e.g.,	 following	 a	 local	 extinction	 caused	 by	West	Nile	 vi-
rus—e.g.,	Naugle	et	al.,	2004;	or	return	after	restoration	following	
natural	 resource	extraction—e.g.,	Naugle	 et	al.,	 2011).	 The	ability	
to	recover	is	exhibited	in	the	network’s	traversability	(i.e.,	the	ap-
parent	 low	 resistance	 to	gene	 flow).	However,	 to	 the	best	of	our	
knowledge,	node	recovery	has	not	been	previously	investigated	in	
wildlife	networks.	The	minimum	spanning	tree	can	serve	as	a	pow-
erful	guide	in	making	management	decisions	related	to	the	relative	
importance	of	 individual	 nodes	 to	overall	 landscape	 connectivity	
(Urban	&	Keitt,	 2001),	 as	 it	 is	 possible	 to	model	which	 nodes	 or	
which	parts	of	the	range	will	most	likely	be	affected	by	the	loss	of	
any	given	node.

Our	 results	 suggest	 that	 distance	 plays	 an	 important	 role	 in	
structuring	 genetic	 connectivity	 (also	 known	 as	 isolation	 by	 dis-
tance,	Wright,	 1943).	 The	 vast	majority	 of	 edges	 in	 the	minimum	
spanning	tree—those	connections	that	represent	the	greatest	cova-
riance—connect	geographically	proximal	nodes	(Figure	2a).	Similarly,	
there	was	 a	 correlation	 between	 conditional	 genetic	 distance	 and	
geographic	distance.	These	 results	 support	 prior	 findings	of	 isola-
tion	by	distance	across	the	species’	range	(Bush	et	al.,	2011;	Cross	
et	al.,	2016;	Davis,	Reese,	Gardner,	&	Bird,	2015;	Fedy,	Row,	&	Oyler-	
McCance,	2017;	Oyler-	McCance,	Taylor,	&	Quinn,	2005;	Schulwitz,	
Bedrosian,	&	Johnson,	2014).	However,	nodes	with	greater	central-
ity,	important	to	both	local	and	network-	wide	genetic	exchange,	are	
located	across	the	species’	range.

Both	Cross	et	al.	(2016)	and	Oyler-	McCance	et	al.	(2005)	found	
that	 sage-	grouse	 subpopulations	 in	 southwestern	Montana	were	
diverged	 from	 populations	 in	 the	 rest	 of	 the	 state.	We	 confirm	
this	prior	finding,	showing	that	sage-	grouse	from	these	same	sub-
populations	are	more	closely	related	to	conspecifics	in	Idaho	than	
to	subpopulations	 in	Montana,	as	 is	evident	 in	edge	connectivity	
within	 the	minimum	spanning	tree	 (Figure	2b).	Cross	et	al.	 (2016)	
also	found	that	the	population	in	Northern	Montana	was	diverged	
from	the	subpopulation	in	Southeastern	Montana	and	the	Dakotas	
and	from	the	southcentral	Montana	subpopulation	(the	SE-	W	sub-
population	in	Cross	et	al.,	2016).	We	confirm	these	findings	here,	
showing	nodes	with	very	high	clustering	coefficient	(indicative	of	
highly	 interconnected	network	subunits)	within	the	same	regions	
(Figure	3).	We	 expect	 that	 the	 other	 top-	ranked	 nodes	 for	 clus-
tering	coefficient	in	the	Middle	Snake-	Succor	watershed	in	Idaho	
and	 the	 Fremont	watershed	 in	Utah	might	 also	 be	 embedded	 at	
the	core	of	their	respective	subpopulations.	Schulwitz	et	al.	(2014)	
found	 that	 the	 subpopulations	 in	 southern	 and	 southeastern	
Montana	and	the	Dakotas	were	both	highly	connected	to	 leks	 in	
northern	Wyoming.	We	 also	 found	 the	 same	pattern	 of	 connec-
tivity,	 evident	 in	 the	 hub-	and-	spoke	 topology	 of	 the	 minimum	
spanning	 tree.	 In	our	case,	a	hub	node	 in	Wyoming/southcentral	
Montana	is	located	in	the	Big	Horn	Lake	watershed	of	northcentral	
Wyoming,	 and	 a	 hub	 node	 for	Wyoming/southeastern	Montana	

subpopulations	 is	 located	within	the	Crazy	Woman	watershed	of	
northeastern	Wyoming	(Figures	2b	and	3).	Davis	et	al.	(2015)	found	
that	 the	 small	 northern	California	 population	 known	 to	have	 ex-
perienced	population	declines	had	retained	genetic	diversity.	We	
confirm	this	understanding	by	finding	that	the	nodes	 in	this	area	
show	elevated	local	connectivity	(covariance)	within	the	area.	We	
also	 found	 that	genetic	connectivity	 into	 the	northern	California	
nodes	comes	from	nodes	to	the	north	in	Oregon	(Figure	2b).	Oyler-	
McCance,	 Casazza,	 Fike,	 and	 Coates	 (2014)	 discovered	 a	 north-
ern	and	a	southern	subpopulation	within	 the	Bi-	State	population	
in	 southern	 California	 and	 southwestern	Nevada.	We	 found	 the	
same	 break	 evidenced	 by	 a	 lack	 of	 edges	 connecting	 these	 two	
units	in	the	minimum	spanning	tree	(Figure	2b).	This	lack	of	inter-
connectivity	among	nodes	in	the	northern	and	southern	groups	is	
especially	surprising,	given	that	both	groups	exhibit	greater	covari-
ance	with	far	more	geographically	distant	nodes.	Fedy	et	al.	(2017)	
documented	genetic	differentiation	between	birds	in	the	Bighorn	
and	Powder	River	Basins	of	Wyoming	as	well	as	differentiation	be-
tween	 the	northern	and	 southern	parts	of	 the	 state,	differences	
reflected	in	our	analysis	as	evidenced	by	edge	connectivity	within	
the	minimum	spanning	tree.

4.2 | Hubs of genetic exchange

We	identified	nodes	with	high	importance	to	large-	scale,	network-	
wide	genetic	connectivity	 (i.e.,	nodes	with	high	betweenness),	and	
nodes	within	the	top	50%	of	all	centrality	indices	important	to	both	
network-	wide	and	 local	connectivity.	These	top-	ranked	hub	nodes	
are	 located	 across	 the	 entire	 range	 of	 the	 species.	 The	 locations	
of	these	hub	nodes	important	to	network-	wide	connectivity	are	in	
areas	that	should	foster	range-	wide	genetic	connectivity	due	to	their	
location	in	the	topography	of	the	western	landscape.

Connectivity	of	these	hubs	is	apparent	in	the	minimum	spanning	
tree	(Figure	2b)	where	connectivity	across	the	range	appears	cres-
cent	shaped,	with	one	point	of	the	crescent	in	northern	Montana/
Saskatchewan	and	the	other	in	Oregon.	The	Upper	Snake	Basin	of	
Idaho	(Lake	Walcott	watershed)	forms	a	thumb	terminating	in	south-
western	 Montana	 to	 the	 northeast.	 Hub	 connectivity	 opens	 up	
over	the	Columbia	Plateau	of	Idaho	(Upper	Snake-	Rock,	C.J.	Strike	
Reservoir,	 and	 Middle	 Snake-	Succor	 watersheds).	 Connectivity	
extends	 south	 into	 the	 Great	 Basin	 composing	 most	 of	 eastern	
California,	 all	 of	 Nevada	 and	 western	 Utah.	 Here,	 the	 Southwest	
River	Basin	in	Idaho	(Middle	Snake-	Succor	and	C.J.	Strike	Reservoir	
watersheds)	connects	to	the	Malheur	Basin	(Upper	Malheur	water-
shed)	to	the	west	and	to	the	South	Lahontan	River	Basin	(Crowley	
Lake	watershed)	by	way	of	 the	Central	Nevada	Desert	 (Diamond-	
Monitor	Valleys	watershed)	to	the	southwest.	The	Green	River	Basin	
of	Wyoming	(Upper	Green	and	Upper	Green-	Slate	watersheds)	sits	
just	west	of	a	low	section	of	the	North	American	Continental	Divide	
connecting	 the	Upper	 Snake	Basin	 and	Great	Basin	 to	 the	 rest	 of	
Wyoming	and	farther	up	into	the	northeastern	part	of	the	species	
range.	The	Green	River	Basin	also	sits	just	north	of	the	Yampa	and	
White	 River	 Basins	 in	 Colorado	 (Little	 Snake	watershed),	 and	 the	
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Bear	River	Basin	 in	Utah	 (Upper	Bear	watershed),	both	connected	
by	low	valleys	to	the	south.	Similarly,	the	Powder	and	Tongue	River	
Basins	of	Wyoming	(Crazy	Woman	watershed)	connect	to	the	north	
with	both	of	the	Dakotas	and	eastern	Montana.	The	Bighorn	River	
Basin,	which	 ranks	 lower	 for	 other	 connectivity	 indices,	 connects	
to	 the	 southeastern-	west	 subpopulation	 in	 the	 Yellowstone	 River	
Basin	of	Montana	 (Cross	et	al.,	2016)—nodes	 in	the	Big	Horn	Lake	
watershed	anchor	both	basins.	We	suspect	that	the	topology	of	the	
genetic	 network	 is	 largely	 shaped	 by	 the	 topography	 of	 the	 land-
scape,	a	hypothesis	previously	posited	for	sage-	grouse	(Cross	et	al.,	
2016;	Row	et	al.,	2015;	Schulwitz	et	al.,	2014),	and	which	has	been	
found	 to	 influence	genetic	 structure	 in	other	 species	 (e.g.,	 Roffler	
et	al.,	2014).

We	identified	26	keystone	nodes	across	the	range	of	sage-	grouse	
that	stand	out	with	increased	importance	to	genetic	connectivity	de-
spite	having	lower	mean	peak	male	count	(Figure	6).	These	keystone	
nodes	do	not	follow	the	presupposition	of	increased	centrality	with	
increased	mean	peak	male	count	(i.e.,	a	proxy	for	population	size	for	
any	given	node)	and	include	the	highest	ranking	nodes	for	each	cen-
trality	index,	regardless	of	the	population	size	(Figure	5).	We	believe	
that	 these	keystone	nodes	and	other	hub	nodes	 (Figure	3)	are	 top	
candidates	for	targeted	conservation	efforts,	as	their	protection	will	
help	 secure	 range-	wide	 genetic	 connectivity.	 The	 keystone	 nodes	
are	also	distributed	across	the	entire	species’	range,	from	the	core	
to	the	periphery	 (Figure	6).	Therefore,	neither	range	centrality	nor	
local	population	size	alone	should	be	trusted	proxies	for	prioritizing	
targeted	conservation	actions	for	sage-	grouse.

4.3 | Limitations of the study and future directions

Prior	 research	 has	 modeled	 range-	wide	 sage-	grouse	 connectiv-
ity	 using	 a	 network	 approach.	 Knick	 and	 Hanser	 (2011)	 weighted	
nodes	using	lek	attendance	and	limited	edge	connections	using	hy-
pothesized	dispersal	 thresholds.	However,	 these	 imposed	dispersal	
thresholds	may	have	affected	the	resultant	network	structure.	For	
example,	Knick	and	Hanser	(2011)	used	an	exponential	decay	func-
tion	 to	determine	 the	probability	of	 connectivity	of	 leks.	 Imposing	
dispersal	thresholds	likely	oversimplified	the	contribution	that	each	
priority	area	for	conservation	made	to	network	connectivity	by	as-
suming	dispersal	 limitations	 is	equal	among	all	nodes	 regardless	of	
the	 internal	 population	 dynamics	within	 nodes	 and	 environmental	
conditions	within	and	among	nodes.	Crist,	Knick,	and	Hanser	(2017)	
used	network	 approaches	 to	 generate	 several	models	of	 hypothe-
sized	 connectivity	 among	 sage-	grouse	priority	 areas	 for	 conserva-
tion,	which	are	areas	 that	protect	 larger	 leks	 (i.e.,	 those	with	more	
males	 visible	 during	 breeding)	 and	 surrounding	 area.	 They	 char-
acterized	 the	 centrality	 of	 each	 priority	 area	 for	 conservation	 and	
concluded	that	several	subnetworks	exist	across	the	species’	range.	
However,	in	their	analysis,	patch	size,	shape,	and	boundary	length	all	
had	an	effect	on	the	pattern	of	connectivity	and	centrality.	Our	anal-
ysis	provides	insight	into	genetic	connectivity	using	centrality	indices	
based	solely	on	the	species’	biology:	the	genetic	covariance	resulting	
from	cumulative	dispersal	and	breeding,	a	quantitative	metric.

We	have	confidence	in	the	cut	distance	we	used	to	cluster	leks	
into	nodes,	 as	 it	 is	empirically	based	on	dispersal	distances	doc-
umented	 over	 a	 vast	 area,	 across	multiple	 years,	 involving	 both	
sexes	 (Cross	et	al.,	2017).	Our	clustering	approach	 increased	ge-
netic	variance	within	nodes,	but	also	increased	covariance	among	
nodes	 (Dyer,	 2015).	 Choice	 of	 cut	 distance	 depends	 on	 the	 de-
sired	scale	of	analysis	for	conservation	and	management	applica-
tion.	We	could	have	performed	this	analysis	using	individual	leks.	
Doing	 so	would	have	 resulted	 in	 finer	 resolution	 for	our	 results.	
However,	it	also	would	have	resulted	in	fewer	individuals	per	node,	
which	would	have	limited	our	characterization	of	within-node	ge-
netic	variation.	Furthermore,	we	would	have	had	to	cut	many	leks	
from	our	analysis	due	to	the	minimum	node	composition	require-
ment	of	 four	 individuals.	By	 clustering	 leks	 into	nodes,	we	were	
restricted	to	making	statements	about	the	connectivity	of	 larger	
landscapes	 that	 extend	beyond	 the	 size	 of	 an	 individual	 lek	 and	
which	were	 potentially	 representative	 of	 leks	 unsampled	within	
the	 same	 landscapes.	 Furthermore,	 our	 clustering	 approach	 re-
flects	the	biology	of	the	species,	as	prior	research	has	shown	that	
both	 female	 and	male	 sage-	grouse	 attend	multiple	 leks	within	 a	
breeding	season	(Cross	et	al.,	2017;	Dunn	&	Braun,	1985;	Semple,	
Wayne,	&	Gibson,	2001).

We	found	evidence	for	correlation	between	some	network	central-
ity	indices	and	samples	per	node	and	mean	peak	male	count.	However,	
when	significant,	these	relationships	were	only	moderate	or	weak	in	all	
but	one	case:	that	of	betweenness	and	samples	within	a	node	(Table	4).	
Therefore,	we	do	not	believe	that	sample	size	drove	the	centrality	of	
a	node.	Larger	populations	acting	as	hub	nodes	might	be	expected,	as	
these	highly	populated	hub	nodes	would	be	expected	to	house	greater	
genetic	 diversity	 to	 be	 the	 sources	 of	 dispersers.	 However,	 as	 dis-
cussed	above,	the	highest	ranking	nodes	for	each	centrality	index	were	
never	those	with	the	greatest	mean	peak	male	count	(Figure	5).

Future	 work	 should	 examine	 the	 effect	 of	 the	 spatial	 distri-
bution	of	 individuals	composing	nodes	on	 the	 resultant	network	
model	 structure.	 For	 example,	 constructing	 a	 genetic	 network	
where	 priority	 areas	 for	 conservation	 serve	 as	 nodes	 may	 help	
prioritize	 conservation	 based	 on	 existing	management	 boundar-
ies	 at	 a	 larger	 landscape	 scale.	 It	 is	worth	 noting	 that	 if	 priority	
areas	for	conservation	are	treated	as	nodes,	 larger	priority	areas	
for	conservation	may	score	higher	for	centrality	indices	due	to	the	
within-	node	proportion	of	 the	genetic	 covariance,	which	will	 in-
crease	centrality.

4.4 | Applications and future directions

We	believe	that	the	greatest	utility	of	our	network	analysis	will	be	
its	use	in	prioritizing	and	targeting	conservation	efforts	to	the	nodes	
most	important	to	maintaining	network	connectivity.	This	network	
approach	allows	for	the	ranking	of	nodes	by	multiple	centrality	indi-
ces,	indicative	of	different	scales	and	different	patterns	of	connectiv-
ity.	These	indices	can	be	used	to	locate	the	top-	ranking	nodes—and	
more	importantly,	the	leks	which	compose	those	nodes—which	can	
then	 be	 prioritized	 in	 accordance	with	management	 goals	 (Bottrill	
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et	al.,	2008).	If	goals	are	to	conserve	hubs	of	genetic	exchange	that	
connect	 the	 greatest	 number	 of	 nodes	 range-	wide,	 then	 ranking	
nodes	based	on	betweenness	is	most	relevant.	 If	goals	are	to	con-
serve	 hubs	 of	 genetic	 exchange	 that	 connect	 immediate	 connec-
tions,	 then	 ranking	nodes	based	on	eigenvector	 centrality	 is	most	
relevant.	 If	goals	are	to	conserve	nodes	that	have	the	greatest	ge-
netic	 exchange	 with	 their	 immediate	 connections,	 then	 ranking	
nodes	based	on	strength	 is	most	relevant.	 If	goals	are	to	conserve	
hubs	of	local	connectivity,	then	ranking	nodes	based	on	closeness	or	
clustering	coefficient	is	most	relevant.

Conservation	 actions	 may	 be	 targeted	 first	 toward	 the	 top-	
ranking	nodes,	or	managers	may	 first	 choose	 to	combine	network	
centrality	with	economic	cost	before	deciding	where	to	act.	We	can	
imagine	many	additional	ways	 in	which	network	centrality	may	be	
combined	with	additional	metrics	to	target	conservation	resources.	
Our	hope	is	that	the	empirically	based	sage-	grouse	genetic	network	
we	constructed	will	prove	a	useful	tool	to	conservation	planners.
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