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Abstract

WindNinja is a standalone computer model designed to provide the user with simulations of
surface wind flow. It is deterministic and steady state. It is currently being modified to allow the
user to initialize the flow calculation using National Digital Forecast Database. It essentially
allows the user to downscale the coarse scale simulations from meso-scale models to finer
resolution.
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Introduction

Wind can be the dominant environmental variable affecting wildland fire intensity and spread.
When fire is burning in mountainous terrain winds can vary widely in speed and direction over
scales of 3 to 200 ft. The result is rapid changes in fire intensity at small scales that can have
significant influences on fire growth at larger scales. Fire analysts and managers have not had
access to detailed wind speed and direction forecasts at the required level of detail. However, the
advance of computer hardware capabilities, relative availability of GIS databases (elevation) and
new advances in numerical solutions to the system of equations governing wind flow have led to
the development of new tools capable of simulating surface wind flow.

Discussion

Two general types of models exist: diagnostic and prognostic. Diagnostic models predict the
wind field at one point in time, and are sometimes called steady-state models, they do not look
forward in time. They are useful for situations requiring fast simulations, with limited computing
resources and casual users such as disaster response applications. Prognostic models step
forward in time. Most models used for weather forecasts are prognostic.

Diagnostic models fall into three categories according to the amount of physics
incorporated. The simplest category models are based only on conservation of mass, termed here
mass-consistent models (Geai 1987; Montero ef al. 1998; Moussiopoulos and Flassak 1986; Ross
1990; Sherman 1978; Stone et al. 1984). The second diagnostic group solves a linearized
momentum equation (Mason and King 1985; Mortensen et al. 1993; Oberheu and Mutch 1975;
Walmsley et al. 1986). Computation times are similar to the mass-consistent models; but non-
linear momentum effects occurring in steep terrain are not handled well (Lopes 2003). The third
type of diagnostic model considers conservation of mass and momentum with some form of
turbulence closure (Alm and Nygaard 1995; Apsley and Castro 1997; Castro et al. 2003; Kim et
al. 2000; Lopes 2003; Maurizi et al. 1998; Raithby and Stubley 1987; Uchida and Ohya 1999;
Undheim et al. 2006) and even conservation of energy (Montavon 1998). In many of these
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models a k-epsilon turbulence closure using the RNG variant (Yakhot and Orszag 1986) is used
(Jones and Rosenfeld 1972). Simulations using the RNG k-epsilon turbulence model have been
shown to handle non-linear flow effects such as recirculation better than mass-consistent models
(Lopes 2003). Simulations take from a few minutes to a few hours on personal computers.

Transient, or prognostic models, include equations for the physics relevant to weather
prediction such as conservation of mass, momentum, energy, moisture and radiant transfer.
Because of the added physics, prognostic model forecasts require significant computing
resources, have complex initial and boundary conditions, and require highly trained specialists to
run them.

Some of the most widely used prognostic weather models in the United States are the
Weather Research and Forecasting (WRF) model, the NCAR/Penn State Mesoscale Model 5
(MMS5), and the Global Forecast System (GFS). The US National Centers for Environmental
Prediction (NCEP) run operational forecasts down to 12 km resolution. Other non operational
models are commonly run down to 4 km resolution. At these resolutions, many important local
terrain influenced flow effects cannot be captured (Atkinson 1995; Kim et al. 2000).

In an effort to include the physics of prognostic models in the high resolution of simpler
diagnostic models a recently developed wind model of type 1 was modified to incorporate output
from prognostic models to initialize the flow field in the diagnostic calculation. This model is

called WindNinja and is
available from the US
Forest Service Missoula
Fire Science
Laboratory.

Fig. 1 presents a
WindNinja grid on a
broader simulation grid
from a prognostic
model. The horizontal
resolution of the
prognostic model is so
large that local terrain
scale features are not
incorporated in the
flow.

Fig. 2 presents a
zoomed in image of the
prognostic model output
data grid. As shown,
wind direction and

speed are shown for
relatively large terrain
areas. Fig. 3 shows the
same region but with the WindNinja output grid imposed. Local terrain features such as
drainages, ridges and other terrain features seem to be more accurately presented.
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The process is
relatively straight forward.
Several coarse scale
weather models are run by
NOAA National Centers
for Environmental
Prediction. These models
range from Skm surface
grids (NDFD) to 80km
volume grids. These
models can provide data
from a point in time out to
3-7 days for a geospatial
subset. WindNinja locates
the data spatially and
retrieves 3 days of data
(this can change).
WindNinja retrieves:
Wind Speed and
Direction, Temperature,
Cloud Cover, and
Geopotential Height if
available.

If the coarse scale
model is a surface model,
such as NDFD, WindNinja
initializes the surface with
those data and initializes
the rest of the volume as it
would without coarse scale
weather data, using a
logarithmic profile. If the
prognostic model output is
volumetric, WindNinja
interpolates those data to
the internal volume mesh
for the entire domain.
Typically, the coarse scale
weather model data is
every 3-6 hours, 3 hours for
the first 2-3 days, then
every 6 hours after.
WindNinja reads in the
G forecast, initializes the
1 domain depending on the
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spatial dimensions, and does a run for each time step in the forecast.

Conclusions

A high resolution surface wind model has been modified to utilize data from a prognostic
weather model at relatively coarse scale to initialize the calculation. A version of the model has
been run using this option. Work continues on a GUI and final release version for distribution to
wildland fire managers. This capability is unique in that it provides a physics based method for
downscaling relatively coarse scale prognostic model data to 100-200m resolution. A release of
this capability in the WindNinja software tool is expected in early 2011.
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