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Abstract
Sparsely	distributed	species	attract	conservation	concern,	but	 insufficient	 informa-
tion	 on	 population	 trends	 challenges	 conservation	 and	 funding	 prioritization.	
Occupancy-	based	monitoring	 is	 attractive	 for	 these	 species,	 but	 appropriate	 sam-
pling	design	and	inference	depend	on	particulars	of	the	study	system.	We	employed	
spatially	 explicit	 simulations	 to	 identify	 minimum	 levels	 of	 sampling	 effort	 for	 a	
	regional	 occupancy	 monitoring	 study	 design,	 using	 white-	headed	 woodpeckers	
(Picoides albolvartus),	a	sparsely	distributed,	territorial	species	threatened	by	habitat	
decline	and	degradation,	as	a	case	study.	We	compared	the	original	design	with	com-
monly	 proposed	 alternatives	with	 varying	 targets	 of	 inference	 (i.e.,	 species	 range,	
space	use,	or	abundance)	and	spatial	extent	of	sampling.	Sampling	effort	needed	to	
achieve	adequate	power	to	observe	a	long-	term	population	trend	(≥80%	chance	to	
observe	a	2%	yearly	decline	over	20	years)	with	 the	previously	used	 study	design	
consisted	of	annually	monitoring	≥120	transects	using	a	single-	survey	approach	or	
≥90	transects	surveyed	twice	per	year	using	a	repeat-	survey	approach.	Designs	that	
shifted	 inference	 toward	 finer-	resolution	 trends	 in	 abundance	 and	 extended	 the	
	spatial	 extent	 of	 sampling	 by	 shortening	 transects,	 employing	 a	 single-	survey	 ap-
proach	to	monitoring,	and	incorporating	a	panel	design	(33%	of	units	surveyed	per	
year)	improved	power	and	reduced	error	in	estimating	abundance	trends.	In	contrast,	
efforts	 to	 monitor	 coarse-	scale	 trends	 in	 species	 range	 or	 space	 use	 with	 repeat	
	surveys	 provided	 extremely	 limited	 statistical	 power.	 Synthesis and applications. 
Sampling	resolutions	that	approximate	home	range	size,	spatially	extensive	sampling,	
and	designs	that	target	 inference	of	abundance	trends	rather	than	range	dynamics	
are	probably	best	suited	and	most	feasible	for	broad-	scale	occupancy-	based	monitor-
ing	of	sparsely	distributed	territorial	animal	species.
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1  | INTRODUCTION

Population	 monitoring	 informs	 biological	 conservation	 by	 revealing	
population	 trends,	 which	 inform	 conservation	 status	 and	 funding	
priorities	 (Marsh	&	Trenham,	 2008).	 Conservationists	 focus	 on	 spe-
cies	experiencing	severe	or	consistent	declines	due	to	anthropogenic	
impacts	 that	 elevate	extinction	 risk	 (Male,	Bean,	&	Schwartz,	2005;	
Rodrigues,	Pilgrim,	Lamoreux,	Hoffmann,	&	Brooks,	2006).	Species	of	
uncertain	status	due	to	insufficient	data	are	difficult	to	target,	even	if	
life	history	or	declining	habitat	warrant	concern.	 Information	for	pri-
oritizing	 conservation	 is	 particularly	 limited	 for	 sparsely	 distributed	
species	 (Roberts,	Taylor,	&	Joppa,	2016).	 Imperfect	detectability	and	
difficulties	with	modeling	also	impose	challenges	for	territorial	animals	
(Efford	&	Dawson,	2012;	Latif,	Ellis,	&	Amundson,	2016).	Low	detect-
ability	and	an	extensive	range	may	necessitate	broad	and	sustained	ef-
fort	to	characterize	population	status,	despite	typically	limited	funding	
(Joseph,	Field,	Wilcox,	&	Possingham,	2006).

Biologists	increasingly	use	occupancy-	based	monitoring	for	these	
species	(Ellis,	Ivan,	&	Schwartz,	2014;	Joseph	et	al.,	2006).	Detection–
nondetection	data	demand	less	funding	than	counts	or	mark–recap-
ture	 data,	 allowing	 more	 spatially	 extensive	 surveys	 (Joseph	 et	al.,	
2006;	Noon,	Bailey,	Sisk,	&	McKelvey,	2012);	while	replicate	sampling	
can	 correct	 for	 imperfect	 detection	 (MacKenzie	 et	al.,	 2002;	 Tyre	
et	al.,	2003).	Occupancy	quantifies	species	distribution,	which	can	in-
form	 species	 range	 at	 coarse	 scales	 or	 finer-	scale	 changes	 in	 space	
use	or	abundance,	all	 relevant	 to	extinction	 risk	 (Clare,	Anderson,	&	
MacFarland,	2015;	Joseph	et	al.,	2006;	Noon	et	al.,	2012).

Study	design	for	monitoring	occupancy	depends	on	desired	infer-
ence	and	species	ecology.	Relatively	 large	sampling	units	potentially	
occupied	by	multiple	 individuals	can	efficiently	 inform	species	range	
estimates,	whereas	smaller	units	may	be	better	for	tracking	finer-	scale	
changes	in	local	abundance	(Clare	et	al.,	2015;	Efford	&	Dawson,	2012;	
Noon	et	al.,	2012).	With	smaller	units,	the	timing	of	replicate	samples	
used	to	correct	for	detectability	in	relation	to	territorial	movement	fur-
ther	shapes	potential	 inference	 (Efford	&	Dawson,	2012;	Latif	et	al.,	
2016;	Valente,	Hutchinson,	&	Betts,	2017).	Sampling	continuously	dis-
tributed	populations	of	mobile	individuals	with	indefinite	home	range	
boundaries	 is	especially	challenging;	such	populations	are	 inherently	
heterogeneous	in	ways	not	quantified	by	commonly	used	models,	po-
tentially	obscuring	inference	(Efford	&	Dawson,	2012).	More	complex	
models	that	correctly	specify	this	heterogeneity	typically	require	more	
sampling	effort,	which	may	be	infeasible	or	compromise	sampling	ex-
tent	 needed	 to	 document	 broad-	scale	 trends	 (Welsh,	 Lindenmayer,	
&	Donnelly,	2013).	Simulation	approaches	can	help	inform	design	of	
occupancy-	based	monitoring	with	such	inherent	and	unavoidable	mis-
specification	of	spatial	heterogeneity	(Ellis,	 Ivan,	Tucker,	&	Schwartz,	
2015;	Ellis	et	al.,	2014).

Desired	 inference	 should	 primarily	 determine	 monitoring	 ap-
proach,	 but	 pragmatic	 considerations	 also	 influence	 study	 design.	
Biologists	may	size	sampling	units	for	study	area	coverage	or	to	match	
the	 resolution	 of	 available	 environmental	 data	 (Zielinski,	 Baldwin,	
Truex,	 Tucker,	 &	 Flebbe,	 2013;	 e.g.,	 Steenweg	 et	al.,	 2016;	 but	 see	
Linden,	 Fuller,	 Royle,	 &	 Hare,	 2017).	 Additionally,	 biologists	 select	

statistical	models	that	best	 leverage	available	data.	For	example,	de-
spite	a	fundamental	relationship	between	detectability	and	abundance	
(Royle	&	Nichols,	2003),	analysts	may	hold	detectability	constant	for	
parsimony	(e.g.,	Zielinski	et	al.,	2013).	Sampling	is	often	then	designed	
to	achieve	adequate	statistical	power	 for	 tracking	occupancy	 trends	
without	a	priori	 specifying	desired	 targets	of	 inference	 (e.g.,	 species	
range,	space	use,	or	abundance).	Inference	of	process,	however,	is	ulti-
mately	needed	to	inform	conservation.

Our	questions	on	monitoring	design	were	motivated	by	a	regional	
occupancy-	based	monitoring	program	for	white-	headed	woodpecker	
(Picoides albolvartus;	 hereafter	WHWO;	Figure	1),	 a	 sparsely	distrib-
uted,	 regionally	 endemic	 species	 with	 narrow	 habitat	 requirements	
(Garrett,	 Raphael,	 &	 Dixon,	 1996;	 Latif,	 Saab,	 Mellen-	Mclean,	 &	
Dudley,	 2015).	WHWO	depend	on	dry	mixed	 conifer	 forests	 domi-
nated	by	ponderosa	pine	(Pinus ponderosa)	and	maintained	by	mixed-	
severity	 fire	 (cf.	 Hessburg,	 Agee,	 &	 Franklin,	 2005).	 Recent	 habitat	
declines	and	evidence	of	low	reproductive	success	in	some	areas	have	
raised	conservation	concerns	(Hollenbeck,	Saab,	&	Frenzel,	2011),	but	
data	on	population	trends	are	lacking	(Wisdom	et	al.,	2002).

To	help	fill	this	information	gap,	regional	occupancy-	based	moni-
toring	was	established	to	evaluate	population	and	distributional	trends	
(Mellen-	McLean,	Saab,	Bresson,	Wales,	&	VanNorman,	2015).	Repeat	
detection–nondetection	 surveys	 along	 transects	 in	potential	 habitat	
of	Oregon	and	Washington	(Figure	2)	informed	occupancy	trends	cor-
rected	 for	 imperfect	 detection.	 Surveyors	 applied	 a	 common	proto-
col	for	birds	of	point-	based	surveys	oriented	along	transects	(see	also	
Rota,	Fletcher,	Dorazio,	&	Betts,	2009;	Valente	et	al.,	2017).	Available	
funding	was	 substantial	 (~$800	 thousand)	 but	 nevertheless	 limited	
monitoring	to	6	years	at	30	transects	while	also	accommodating	other	

F IGURE  1 Photograph	of	a	White-	headed	Woodpecker
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objectives	 (Mellen-	McLean	 et	al.,	 2015).	Growing	 agency	 interest	 in	
white-	headed	woodpeckers	 could	motivate	 expanded	 and	more	 fo-
cused	monitoring	of	long-	term	trends,	which	we	aimed	to	inform.

To	address	the	questions	raised	by	this	case	study,	we	used	sim-
ulations	 to	 evaluate	 alternative	 approaches	 to	 regional	 monitoring	
while	 explicitly	 considering	potential	 inference	 and	 species	 ecology.	
Spatially	explicit	simulations	correctly	represented	model	misspecifi-
cation	typically	inherent	with	occupancy-	based	monitoring	of	continu-
ously	distributed	populations,	improving	estimates	of	statistical	power	
for	informing	study	design	(Ellis	et	al.,	2014,	2015).	We	assessed	min-
imum	effort	needed	for	desirable	statistical	power	given	the	historical	
study	design,	and	we	explored	how	alternate	sampling	allocations	in-
fluenced	statistical	power.	We	considered	sampling	allocations	alter-
nately	suited	for	inferring	coarse-	scale	distributional	changes	or	range	
dynamics	versus	finer-	scale	changes	in	abundance	or	space	use	(e.g.,	
Valente	 et	al.,	 2017).	Candidate	 designs	varied	 in	 how	 they	 favored	
spatially	extensive	versus	more	intensive	survey	allocation,	the	value	
of	 which	 depends	 on	 population	 heterogeneity	 (Rhodes	 &	 Jonzén,	

2011).	Alternatives	considered	here	represent	commonly	used	designs	
for	broad-	scale	occupancy-	based	studies,	thus	providing	general	guid-
ance	for	monitoring	sparsely	distributed,	territorial	animals.

2  | MATERIALS AND METHODS

2.1 | White- headed Woodpecker regional 
monitoring

Occupancy-	based	monitoring	of	WHWO	across	 the	 inland	north-
western	United	 States	was	 originally	 implemented	 in	 2011–2016	
(Mellen-	McLean	et	al.,	2015).	Surveys	occurred	along	30	transects	
twice	a	year	during	the	nesting	season,	May	1–June	30.	Surveyors	
broadcast	recorded	calls	and	drumming	to	elicit	territorial	responses	
to	 improve	detectability.	Transects	were	10	 survey	points	 spaced	
~300	m	apart.	A	transect	survey	consisted	of	surveying	each	point	
along	a	transect.	This	approach	is	common	for	surveying	birds	(com-
mon	 approach	 for	 birds;	 e.g.,	 Amundson,	 Royle,	 &	Handel,	 2014;	

F IGURE  2 National	forests	of	the	
eastern	Cascade	Mountains,	Oregon	
and	Washington,	U.S.A.	White-	headed	
Woodpecker	regional	monitoring	focused	
on	potential	habitat	(gray),	where	large-	
cone	pine	species	(mainly	ponderosa)	
dominate
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Pavlacky,	 Blakesley,	 White,	 Hanni,	 &	 Lukacs,	 2012;	 Rota	 et	al.,	
2009),	and	for	WHWO	provided	opportunity	for	broadcasting	calls	
followed	by	a	period	of	listening	(max	5	min	total)	before	proceed-
ing	 to	 the	 next	 point.	 To	 conserve	 time,	 surveyors	 immediately	
proceeded	 to	 the	next	point	along	a	 transect	when	white-	headed	
woodpecker	 was	 first	 detected.	 Thus,	 they	 strictly	 recorded	 de-
tection–nondetection	 data,	 restricting	 the	 focus	 of	monitoring	 to	
occupancy.

2.2 | Population and sampling simulations

Following	 the	 initial	 6-	year	 effort,	 we	 simulated	 occupancy-	based	
monitoring	of	white-	headed	woodpeckers	to	inform	potential	future	
efforts.	Recognizing	the	need	for	greater	sampling	effort	to	meaning-
fully	quantify	trends,	however,	we	simulated	surveys	of	≥60	transects	
over	20	years.

Simulated	populations	experienced	deterministic	trends	based	on	
an	exponential	model,	

where Nt	 is	population	abundance	in	year	t and λN	 is	the	proportion	
change	in	abundance	per	year	(for	theoretical	basis,	see	Gotelli,	2001).	
We	considered	a	 range	of	 trend	scenarios	of	potential	 conservation	
concern,	λN	=	{1.0,	0.98,	0.95,	or	0.9},	that	is,	0%,	33%,	64%,	or	88%	
decline	over	20	years.	 Simulated	 trends	 represented	effect	 sizes	 for	
analyzing	power.	Positive	trends	(λN	>	1.0)	were	less	of	a	concern	for	
informing	prioritization	of	WHWO	for	conservation	action	and	there-
fore	not	considered.	Although	real	populations	fluctuate	stochastically,	
we	 lacked	 information	 for	 simulating	 specific	 levels	 of	 stochasticity,	
and	deterministic	trends	provided	clearer	effect	sizes	for	interpreting	
power	estimates	(see	also	Ellis	et	al.,	2015;	MacKenzie	&	Royle,	2005).	
We	 intended	 the	 range	 of	 simple	 deterministic	 trends	 considered	
here	to	 inform	surveillance	monitoring	aimed	at	documenting	unan-
ticipated	change	rather	than	particular	ecological	scenarios	(Hutto	&	
Belote,	2013).

We	simulated	population	monitoring	so	as	to	explicitly	represent	
the	 process	 of	 sampling	 discrete	 detection–nondetection	 data	 for	
continuously	distributed	populations	(cf.	Efford	&	Dawson,	2012;	Ellis	
et	al.,	 2014;	 contra	MacKenzie	 &	 Royle,	 2005).	We	 conducted	 sim-
ulations	 using	 the	 rSPACE	 package	 (Ellis	 et	al.,	 2014,	 2015)	 in	 R	 (R	
Core	Team,	2015).	 Simulations	entailed	 (1)	 randomly	distributing	N1 
home	ranges	across	suitable	habitat,	(2)	calculating	the	probability	of	
encountering	≥1	white-	headed	woodpecker	at	a	survey	point,	(3)	gen-
erating	detection–nondetection	data	based	on	these	encounter	prob-
abilities,	and	(4)	randomly	removing	Nt	×	(1	−	λN)	individuals	from	the	
landscape	and	repeating	steps	2–3	for	each	remaining	year	t = 2–20 
(Appendix	S1).	We	collected	data	for	a	region-	wide	300	m	point	grid,	
and	 later	derived	transect	monitoring	scenarios.	Surveyors	rarely	re-
corded	detections	>150	m	away	(7%	of	2011–2016	detections),	so	we	
simulated	150-	m	fixed-	radius	point	surveys.

We	consolidated	point	data	to	represent	transect	monitoring	sce-
narios	varying	in	sampling	effort	and	allocation.	A	transect	detection	
represented	 ≥1	 detection	 at	 any	 given	 point	 along	 a	 transect	 on	 a	

given	day.	One	home	range	(1-	km	radius)	could	include	multiple	neigh-
boring	points,	so	point-	level	detections	within	transects	were	spatially	
correlated,	whereas	≥2	km	transect	spacing	avoided	spatial	correlation	
in	 transect	detections.	Additionally,	with	 transects,	we	were	able	 to	
explore	a	fundamental	issue	in	monitoring	design:	the	relative	merits	
of	sampling	 intensively	 (e.g.,	more	points	per	transect	or	repeat	sur-
veys)	versus	extensively	(more	transects).

We	considered	monitoring	scenarios	to	accomplish	two	objectives:	
(1)	 identify	 levels	 of	 sampling	 effort	 capable	 of	 providing	 desirable	
power	(≥80%	chance	to	observe	a	decline	given	λN	≤	0.98);	 (2)	com-
pare	commonly	considered	sampling	allocation	strategies	representing	
alternative	targets	of	inference	and	spatial	extents	of	sampling.	We	ad-
dressed	objective	1	by	varying	sampling	effort	(ntransect	≥	60;	i.e.,	npoint-
surveys-per-year	≥	1,200)	with	different	trends	and	the	historical	sampling	
allocation	of	10	points	per	transect	surveyed	twice	every	year.	For	ob-
jective	2,	we	focused	on	a	long-	term	decline	scenario	(λN	=	0.98)	and	
fixed	sampling	effort	 (npoint-surveys-per-year	=	1,200)	while	varying	moni-
toring	strategies.	The	historical	allocation	scheme	represented	an	in-
tended	inference	of	relatively	coarse-	scale	trends.	Alternative	schemes	
included	surveying	shorter	transects	(8–3	points	per	transect),	which	
targeted	inference	of	finer-	scale	trends	by	sampling	smaller	areas	po-
tentially	occupied	by	fewer	individuals.	We	also	considered	surveying	
transects	 only	 once	 per	 year,	 representing	 single-	survey	 occupancy	
approaches	whose	estimates	provide	temporal	snapshots	of	popula-
tions,	 useful	 for	 inferring	 changes	 in	 abundance	 (Hutto,	 2016;	 Latif	
et	al.,	2016).	Finally,	we	considered	surveying	<100%	of	transects	per	
year	 (i.e.,	 panel	designs;	Bailey,	Hines,	Nichols,	&	MacKenzie,	2007;	
Urquhart	&	Kincaid,	1999)	or	repeating	surveys	at	<100%	of	transects	
each	year.	Having	fixed	sampling	effort,	 these	alternate	schemes	al-
lowed	monitoring	of	more	transects,	which	extended	spatial	sampling.

For	 simplicity,	 simulations	 assumed	 no	 false-	negative	 observer	
error	 (hereafter	 observer	 error),	 that	 is,	white-	headed	woodpeckers	
were	always	detected	 if	present	during	a	survey.	Thus,	detectability	
was	determined	exclusively	by	territorial	movement	between	repeat	
surveys	within	a	year.	This	assumption	was	defensible	because	call-	
broadcast	 surveys	 reduce	 observer	 error	 and	 standardized	 surveys	
limit	 potentially	 confounding	 interannual	 variation	 in	 observer	 error	
(Mellen-	McLean	et	al.,	2015).	Additionally,	we	calibrated	simulations	
with	 pilot	 data	 (Appendix	 S2).	 Encounter	 probabilities	 during	 a	 sur-
vey	 therefore	 reflected	 the	 number,	 location,	 size,	 and	 spacing	 of	
home	 ranges,	 informed	by	white-	headed	woodpecker	ecology;	pop-
ulation	size	reflected	calibration	with	pilot	data	and	assumed	trends	
(Appendices	S1	and	S2).

Spatial	variability	 in	detectability	 (i.e.,	encounter	probabilities	 in	
simulations)	emerged	 from	variation	 in	nesting	habitat	and	random	
placement	 of	 home	 ranges	within	 this	 habitat,	which	 caused	 local	
abundance	and	proximity	to	centers	of	activity	to	vary	among	tran-
sects.	 Reflecting	 likely	 realities,	 detectability	 at	 occupied	 transects	
increased	with	 increasing	 abundance	 and	 decreased	with	 distance	
from	home	 range	centers	 (see	Appendix	S1).	Analyses	 ignored	 this	
spatial	heterogeneity,	and	thus	informed	study	design	while	account-
ing	for	likely	constraints	on	model	complexity	due	to	limited	sampling	
effort.	We	 initially	 considered	 smaller	home	 ranges	 (600	m	 radius),	

(1)Nt=N1×λt
N
,
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but	calibration	to	pilot	data	required	compensatory	adjustments	 to	
initial	abundance,	resulting	in	similar	patterns	in	statistical	power	(Q.	
Latif,	 unpublished	 data).	We	 restricted	 simulations	 to	 national	 for-
ests,	representing	77%	(7.7	×	106	ha)	of	potential	habitat	within	the	
region	(Figure	2).

2.3 | Data analysis

For	scenarios	yielding	repeat-	survey	data,	we	estimated	trends	with	
two	 different	 occupancy	 models	 representing	 commonly	 consid-
ered	ways	of	correcting	for	detectability	(p;	e.g.,	Linden	et	al.,	2017;	
Steenweg	 et	al.,	 2016;	 Zielinski	 et	al.,	 2013)	 to	 estimate	 occupancy	
probability	 (ψ;	 Figure	3a,b).	 One	 model	 allowed	 detectability	 esti-
mates	to	vary	interannually	(hereafter	the	yearly-	p	model;	Figure	3a),	
whereas	the	other	held	detectability	constant	(hereafter the constant-
 p	model;	Figure	3b;	for	model	structures,	see	Appendix	S3).	Because	
individuals	 could	move	 in	 or	 out	 of	 the	 surveyed	 area	between	 re-
peat	 surveys	within	 a	 year,	 these	models	 quantified	 the	 probability	
of	 a	 transect	 intersecting	≥1	home	 range,	hereafter	 true occupancy,	
which	describes	species	range	or	space	use	(Efford	&	Dawson,	2012;	
MacKenzie	&	Royle,	 2005).	 The	yearly-	p	model	 allows	detectability	

to	change	with	changing	abundance	(Royle	&	Nichols,	2003)	to	bet-
ter	estimate	true	occupancy.	The	constant-	p	model	misspecifies	true	
occupancy,	but	is	frequently	considered	and	may	be	selected	for	par-
simony	in	applied	studies	(e.g.,	Zielinski	et	al.,	2013).	Additionally,	hav-
ing	controlled	for	observer	error	(e.g.,	if	nonexistent	as	in	simulations,	
or	controlled	via	standardized	surveys),	the	constant-	p	model	coerces	
occupancy	estimates	to	reflect	any	interannual	changes,	shifting	the	
target	of	inference	to	abundance	(Figure	3b).

For	 scenarios	 yielding	 single-	survey	 data,	 we	 estimated	 trends	
using	 logistic	 regression	 (see	 structure	 in	Appendix	 S3).	 Having	 ex-
cluded	observer	error	 in	simulations,	 logistic	 regression	models	esti-
mated	probability	of	≥1	individual’s	physical	presence	during	a	survey,	
hereafter	 probability of physical presence.	 Single-	survey	 scenarios	
represented	 single-	survey	occupancy	approaches,	 in	which	 replicate	
surveys	occur	within	a	narrow	enough	timeframe	for	detectability	to	
quantify	observer	error	so	that	occupancy	estimates	quantify	proba-
bility	of	physical	presence	(e.g.,	double-	observer	and	removal	designs;	
Nichols	et	al.,	2008;	Rota	et	al.,	2009).	By	omitting	observer	error	from	
simulations,	however,	replicate	surveys	were	unnecessary	to	quantify	
physical	presence.	Probability	of	physical	presence	represents	a	tem-
poral	 snapshot	 of	 a	 population	 unaffected	 by	 territorial	 movement	

F IGURE  3 How	model	estimates	reflect	underlying	processes	under	alternative	monitoring	approaches.	Repeat-	survey	occupancy	estimates	
fundamentally	quantify	true	occupancy	(a,	b)	but	can	index	abundance	trends	if	detectability	is	held	constant	(b,	contra	A).	Territorial	movement	
influences	repeat-	survey	occupancy	estimates	(a,	b),	whereas	single-	survey	occupancy	estimates	represent	population	snapshots	not	influenced	
by	movement	(c).	False-	negative	observer	error	was	not	simulated	but	could	influence	estimates	in	reality
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expected	 to	 closely	 track	 abundance	 (Figure	3c;	 Hutto,	 2016;	 Latif	
et	al.,	2016).	Additionally,	surveying	transects	only	once	allowed	us	to	
monitor	twice	as	many	transects,	increasing	sampling	extent.	In	prac-
tice,	auxiliary	sampling	 (e.g.,	 recording	detection	timing	or	deploying	
multiple	observers)	would	account	 for	observer	error	 (Nichols	et	al.,	
2008;	 Rota	 et	al.,	 2009),	 likely	 adding	 to	 uncertainty	 in	 trend	 esti-
mates.	Ignoring	observer	error	in	both	single-		and	repeat-	survey	sce-
narios,	however,	made	their	comparison	informative.

We	quantified	 occupancy	 trends	 as	 proportion	yearly	 change	 in	
odds	 occupancy,	 λψ =

ψt+1∕(1−ψt+1)

ψt∕(1−ψt)
	 (MacKenzie	 et	al.,	 2006).	We	 ana-

lyzed	detection–nondetection	data	with	fixed	year	effects	and	subse-
quently	calculated	least-	squares	trends	in	yearly	occupancy	estimates	
(see	also	Ellis	et	al.,	2014).	We	quantified	statistical	power	as	percent	
simulations	when	95%	Bayesian	credible	intervals	(BCIs)	for	the	esti-
mated	trend	for	the	study	period	(λ̂ψ where logit(ψt)=β0+ log (λψ)× t; 
p.	200,	MacKenzie	et	al.,	2006)	fell	below	1.	We	also	calculated	root	
mean	 squared	 error	 for	 trend	 estimates	 (RMSEN=

√

mean(λ̂ψ −λN),	 
RMSEψ =

√

mean(λ̂ψ −λψ )).	 When	 quantifying	 true	 occupancy,	 we	
considered	 occupied	 transects	 to	 be	 those	with	 encounter	 p	≥	.05.	
Having	 found	extremely	 limited	 statistical	 power	with	yearly-	p esti-
mates	(see	Objective	1	Results),	we	primarily	assessed	sampling	allo-
cations	(Objective	2)	for	constant-	p	and	logistic	regression	models,	but	
then	tested	yearly-	p	again	with	better	allocation.	Furthermore,	given	
likely	 targets	 of	 inference,	 we	 considered	 RMSEN	 most	 relevant	 to	
constant- p	and	logistic	regression	models,	and	RMSEψ relevant to the 
yearly-	p	model.	For	additional	methods	and	 rationale,	 see	Appendix	
S3.

3  | RESULTS

3.1 | Occupancy, abundance, and estimator behavior

Comparing	true	occupancy	(proportion	transects	with	encounter	p	≥	.05)	
and	abundance	informed	understanding	of	statistical	power	and	estima-
tor	properties.	True	occupancy	related	positively	with	abundance	but	pla-
teaued	at	higher	abundances	(Figure	4a,c).	True	occupancy	declines	lagged	
abundance	declines	(Figure	4b,d).	With	shorter	transects,	true	occupancy	
corresponded	better	but	still	imperfectly	with	abundance	(Figure	4c,d).

Occupancy	estimates	remained	constant	with	no	abundance	trend	
and	 declined	with	 declining	 abundance	 (Figure	5).	 Detectability	 es-
timates	 declined	 with	 declining	 abundance	 either	 across	 scenarios	
(constant- p	estimates)	or	through	time	(yearly-	p	estimates;	Figure	6).	
Yearly-	p	 estimator	 precision	was	 less	 than	 for	 constant-	p	 estimates	
and	declined	with	declining	abundance	(Figures	5	and	6).

Detectability	estimates	followed	the	behavior	of	encounter	prob-
abilities	at	occupied	transects	but	were	generally	higher,	that	is,	posi-
tively	biased	(Figure	6),	making	occupancy	estimates	negatively	biased	
(Figure	5).	Logistic	regression	estimates	deviated	even	more	from	true	
occupancy	 (Figure	5c,f,i,l),	 reflecting	 the	differing	 target	of	 inference	
(i.e.,	probability	of	physical	presence;	see	Section	2	and	Appendix	S3).

3.2 | Objective 1: Sampling effort

With	historical	survey	allocation,	statistical	power	increased	with	in-
creasing	sampling	effort	and	stronger	population	declines	(Figure	7).	

F IGURE  4 True	occupancy	(ψ) versus 
abundance	(N	=	number	of	individuals	
across	all	7,676,971	ha	of	potential	habitat	
in	Oregon	and	Washington	national	
forests;	a,	c)	and	correspondence	of	(odds)	
occupancy	(λψ)	with	abundance	trends	
(λN;	b,	d)	for	simulated	white-	headed	
woodpecker	populations.	Thirty	replicate	
populations	monitored	for	20	years	for	
each	trend	scenario	are	depicted	when	
surveyed	at	transects	consisting	of	10	
points	(a,	b)	or	three	points	(c,	d)	each.	In	
panels	b	and	d,	the	red	line	indicates	1:1	
correspondence	(desirable	for	inference)	
between	occupancy	and	abundance	trends
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The constant- p	model	and	 logistic	 regression	 (with	single-	survey	al-
location)	 generally	 provided	 adequate	 power	 (≥80%	 chance	 of	 ob-
serving	a	decline).	Power	was	only	inadequate	with	a	small	effect	size	
(λN	=	0.98)	 and	minimal	 sampling	 effort	 (j ≤ 60	 and	90	 transects	 for	
constant- p	 and	 logistic	 regression,	 respectively).	 In	 contrast,	 power	
was	never	adequate	with	 the	yearly-	p	model.	Spurious	 trends	were	
rarely	observed	(1.5%	of	simulations	in	which	λN = 1).

With	 no	 abundance	 or	 occupancy	 trends,	models	 estimated	 ac-
tual	 trends	with	minimal	 error	 and	 no	 apparent	 bias,	 but	 error	 and	
bias	grew	with	 increasing	trend	 (Figure	8).	The	constant-	p	model	 in-
creasingly	 overestimated	 declines	with	 steeper	 abundance	 declines,	

although	 abundance	 trends	were	 estimated	 better	 (RMSEN	≤	0.055)	
than	 occupancy	 trends	 (RMSEψ	≤	0.105).	 Yearly-	p	 trend	 estimates	
were	 centered	 between	 actual	 abundance	 and	 occupancy	 trends	
(RMSE	≤	0.05).	 Models	 fitted	 to	 single-	survey	 data	 estimated	 true	
abundance	 trends	with	 the	 least	 error	 (RMSEN	≤	0.008)	 and	 no	 ob-
vious	bias.

3.3 | Objective 2: Sampling allocation

Monitoring	strategies	that	targeted	inference	of	finer-	scale	trends	
in	space	use	or	abundance	and	extended	sampling	spatially	generally	

F IGURE  5 Yearly	occupancy	estimates	from	simulated	regional	white-	headed	woodpecker	monitoring.	Simulated	trends	were	λN	=	1	(a–c),	
0.98	(d–f),	0.95	(g–i),	and	0.9	(j–l).	Repeat-	survey	occupancy	estimates	assumed	constant	detectability	(a,	d,	g,	and	j)	or	variable	detectability	
among	years	(b,	e,	h,	and	k).	Single-	survey	estimates	assumed	perfect	detectability	(c,	f,	i,	and	l).	Thirty	simulations	of	monitoring	transects	of	
10	points	each	for	20	years	are	represented	for	each	scenario	(n = 150	and	300	transects	for	repeat-		and	single-	survey	scenarios,	respectively).	
Black	dots	and	blue	vertical	bars	show	yearly	estimates	and	95%	BCIs	jittered	for	display.	Black	lines	connect	estimates	from	consecutive	years	
for	individual	simulations.	Red	dots	show	mean	true	occupancy	for	30	simulations,	that	is,	proportion	of	all	possible	transects	occupied
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provided	more	power	and	less	estimation	error	than	the	historical	
strategy.	 Power	 improved	 and	 estimation	 error	 decreased	 when	
monitoring	 shorter	 but	more	 transects	 (Figures	9	 and	 10).	 Power	
was	greatest	and	error	(RMSEN)	least	when	monitoring	the	probabil-
ity	of	physical	presence	with	single-	survey	data	(Figures	8c	and	10).	
In	contrast,	we	found	the	 least	power	and	greatest	error	 (RMSEψ) 
when	attempting	to	monitor	true	occupancy	with	repeat	surveys	and	
the	 yearly-	p	model	 (Figure	8b).	 Interestingly,	 despite	more	explic-
itly	targeting	inference	of	occupancy,	yearly-	p	trends	estimates	did	
not	estimate	occupancy	trends	with	any	less	error	(RMSEψ	≤	0.105)	
than	logistic	regression	(RMSEψ	≤	0.055).	Although	it	provided	ad-
equate	power	 in	many	scenarios,	 the	constant-	p	model	 tended	 to	
overestimate	both	occupancy	and	abundance	declines	 (Figures	8a	
and	9).

Panel	designs	with	 relatively	small	panels	 (33%	of	 transects	sur-
veyed	 each	year)	 also	 improved	 power	 and	 reduced	 error,	 although	
larger	panels	 (50%	of	 transects	surveyed	each	year)	did	not	provide	
notable	gains.	Conducting	fewer	repeat	surveys	in	exchange	for	more	
transects	 also	 did	 not	 substantively	 affect	 power	 and	 tended	 to	 in-
crease	estimation	error	(Figure	11).

The	design	that	maximized	power	and	minimized	error	with	con-
stant- p	and	 logistic	 regression	models	was	a	33%	panel	design	with	
3	 points	 per	 transects.	 Even	 with	 this	 design,	 the	 yearly-	p	 model	
provided	 inadequate	 power	 (13%),	 although	 trend	 estimation	 error	
was	 less	than	with	the	historical	design	 (RMSEψ	=	0.009;	nsim = 100;  
ntransect	=	600	over	20	years;	compare	with	Figure	7b).

4  | DISCUSSION

Our	simulations	suggested	minimum	levels	of	sampling	effort	needed	
to	provide	adequate	power	while	also	informing	study	design	for	mon-
itoring	WHWO	with	explicit	targets	of	inference.	With	the	historical	
design	of	surveying	transects	with	10	points	each	twice	a	year	to	tar-
get	coarse-	scale	trends	in	true	occupancy	(species	range	or	space	use),	
we	 found	 60–90	 transects	 could	 be	 sufficient	 for	 desirable	 power.	
This	design	would	require	holding	detectability	constant	across	years,	
however,	which	would	force	occupancy	estimates	to	index	abundance	
(constant- p	model)	and	cloud	potential	 inference.	Surveying	shorter	
transects	 (i.e.,	 closer	 to	 the	 span	 of	 one	 home	 range)	 using	 a	 33%	

F IGURE  6 Detection	probability	(p; 
black	=	median,	blue	=	95%	BCIs)	estimates	
from	repeat-	survey	occupancy	models	
and	encounter	probabilities	(red;	i.e.,	true	
detectability)	for	simulated	white-	headed	
Woodpecker	regional	monitoring.	Scenarios	
entailed	monitoring	150	transects	of	10	
points	each	surveyed	twice	yearly	for	
20	years.	Estimates	assume	constant	
detectability	(a)	or	variable	detectability	
among	years	(b–e;	jittered	horizontally	for	
display).	Encounter	probabilities	are	median	
values	for	occupied	transects	(i.e.,	with	
encounter p	≥	.05).	Simulated	trends	were	
λN	=	1.0	(a,	b),	0.98	(a,	c),	0.95	(a,	d),	or	0.9	
(a,	e)	(n = 30	simulations	per	scenario)
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panel	design	could	allow	stronger	and	clearer	inference	of	abundance	
trends,	extend	sampling	spatially,	and	improve	power.	For	further	im-
provements	to	power	and	inference,	we	could	survey	transects	only	
once	per	year	to	monitor	the	probability	of	physical	presence	while	
accounting	for	observer	error.	In	contrast,	sampling	designed	to	docu-
ment	changes	in	true	occupancy	did	not	appear	feasible	at	sampling	
levels considered here.

4.1 | Sampling resolution and scale of inference

Our	results	further	emphasize	the	benefits	of	sampling	at	resolutions	
(i.e.,	 unit	 size,	 grid	 cell	 size)	 approximating	 the	 size	 of	 an	 individual	
home	range	documented	by	others	(Efford	&	Dawson,	2012;	Linden	
et	al.,	2017).	Finer	resolution	sampling	generates	occupancy	estimates	
that	more	closely	track	abundance.	This	estimator	property	should	be	
desirable	 for	 practitioners	who	monitor	 occupancy	 in	 lieu	 of	 abun-
dance	primarily	on	pragmatic	grounds.

Single-	survey	 sampling	 can	 similarly	 benefit	 monitoring	 of	 ter-
ritorial	 animals	 by	 providing	 temporal	 snapshots	 of	 populations	 un-
affected	 by	 movement	 and	 therefore	 closely	 related	 to	 abundance	
(Hutto,	2016;	Latif	et	al.,	2016).	We	simulated	an	ideal	world	with	no	
observer	error	wherein	single-	survey	estimates	were	readily	interpre-
table	as	the	probability	of	physical	presence.	In	reality,	some	observer	
error	is	likely,	requiring	auxiliary	sampling	to	estimate	a	snapshot	prob-
ability	of	physical	presence.	Auxiliary	measurements	of	detection	tim-
ing	or	covariates	of	observer	error	could	 inform	bias	correction	with	
minimal	additional	survey	effort	(Lele,	Moreno,	&	Bayne,	2012;	Rota	
et	al.,	2009).	For	monitoring	white-	headed	woodpeckers,	analysis	of	
detection	 timings	 recorded	 historically	 (Mellen-	McLean	 et	al.,	 2015)	

combined	with	published	guidelines	(MacKenzie	&	Royle,	2005)	could	
inform	optimal	survey	length	for	single	surveys.	Other	approaches	are	
described	 but	would	 require	more	 effort	 or	 are	 designed	 to	 inform	
abundance	rather	than	occupancy	estimates	(e.g.,	multiple	observers,	
replicated	 camera	 or	 track	 stations,	 distance	 sampling;	 Amundson	
et	al.,	2014;	Nichols	et	al.,	2008).	Lacking	data	on	observer	error,	naïve	
occupancy	 could	 usefully	 index	 abundance	 if	we	 are	 confident	 that	
observer	error	does	not	vary	interannually	and	therefore	cannot	con-
found	 trend	estimation	 (e.g.,	with	 standardizing	bird	 surveys;	Hutto,	
2016).

Observer	 error	 can	vary	with	 local	 abundance	 (Royle	&	Nichols,	
2003),	 potentially	 introducing	 noise	 not	 represented	 in	 our	 simula-
tions.	Larger	sampling	units	potentially	occupied	by	multiple	 individ-
uals	 would	 be	 most	 prone	 to	 such	 variability,	 so	 aligning	 sampling	
resolution	with	home	range	size	would	be	desirable	even	with	a	single-	
survey	design.

A	 single-	survey	 design	 would	 require	 consistently	 conducting	
surveys	when	 individuals	 are	 readily	 detectable.	With	 sensitivity	 of	
nest	survival	to	temperature	(Hollenbeck	et	al.,	2011),	climate	change	
may	 alter	 nesting	 phenology,	 potentially	 influencing	 responsiveness	
to	call	broadcasts.	Such	changes	could	necessitate	adjusting	the	tim-
ing	of	surveys,	which	could	be	 informed	by	targeted	repeat	surveys,	
as	 are	 commonly	 implemented	 for	 birds	 (Latif,	 Fleming,	 Barrows,	 &	
Rotenberry,	2012;	Rota	et	al.,	2009).

Our	results	indicate	challenges	for	monitoring	to	infer	changes	in	
species	range	(coarse-	scale)	or	space	use	(finer	scale)	as	in	yearly-	p 
scenarios	here.	By	definition,	occupancy	only	declines	when	abun-
dance	declines	enough	to	result	 in	 local	extirpation,	so	 true	occu-
pancy	declines	 could	 indicate	 strong	need	 for	 conservation.	More	

F IGURE  7 Simulation-	based	power	
to	observe	white-	headed	woodpecker	
regional	occupancy	trends	(percent	
simulations	with	95%	BCI	<1).	Scenarios	
varied	in	number	of	transects,	monitoring	
approach	(constant-	p	or	yearly-	p 
occupancy	models,	or	logistic	regression),	
and trend (λN	=	exponential	change	in	
abundance).	For	all	scenarios,	transects	
consisted	of	10	survey	points	surveyed	
twice	(occupancy	models)	or	once	(logistic	
regression)	per	year.	Constant-	p	assumed	
constant	detectability,	whereas	yearly-	p 
allowed	variable	detectability	among	years.	
Logistic	regression	allowed	double	the	
number	of	transects	by	analyzing	single-	
survey	data
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intensive	sampling	in	areas	or	years	with	low	abundance,	however,	
may	 be	 needed	 to	 correctly	 identify	 occupancy	 declines.	At	 finer	
scales,	spatial	heterogeneity	in	detectability	arising	from	variability	
in	local	abundance	and	home	ranges	that	lack	definitive	boundaries	
can	limit	accurate	estimation	of	space	use	(Efford	&	Dawson,	2012).	
Biases	in	occupancy	and	detectability	estimates	observed	here	likely	
primarily	 reflect	 these	effects.	 Including	habitat	 relationships	with	
occupancy	 in	 analytical	 models	 (omitted	 from	 simulations)	 might	
help	by	accounting	somewhat	for	spatial	heterogeneity	in	the	data,	
but	effects	on	detectability	of	varying	local	abundance	and	proxim-
ity	to	home	ranges	at	occupied	transects	would	remain.	Effectively	
estimating	 species	 distribution	 at	 any	 scale	 may	 require	 substan-
tial	 spatial	 or	 temporal	 replication	within	 sampling	units	 (Pavlacky	
et	al.,	2012;	Valente	et	al.,	2017).	Given	likely	demands	on	funding,	
such	 approaches	 may	 be	 feasibly	 implemented	 only	 infrequently	
(e.g.,	Cruickshank,	Ozgul,	Zumbach,	&	Schmidt,	2016).	Alternatively,	
predictive	models	 (e.g.,	 Hollenbeck	 et	al.,	 2011;	 Latif	 et	al.,	 2015;	
Wightman,	Saab,	Forristal,	Mellen-	McLean,	&	Markus,	2010)	could	
supplement	trend	monitoring	by	identifying	changes	in	habitat.

Nested	surveys	 (e.g.,	points	along	transects)	can	 inform	hierar-
chically	structured	models	capable	of	estimating	patterns	or	trends	
at	multiple	scales	(Pavlacky	et	al.,	2012;	Rota	et	al.,	2009;	Royle	&	
Kéry,	2007).	Multiscale	inference	would	require	sufficient	sampling	
at	all	 scales	of	 interest,	however,	which	may	be	beyond	 resources	

available	for	many	monitoring	programs	(Valente	et	al.,	2017).	Our	
initial	 attempts	 found	 inadequate	 sampling	 for	 meaningful	 multi-
scale	inference	(Q.	Latif,	unpublished	data),	so	we	abandoned	such	
approaches	here.

4.2 | Sampling extent

Spatially	extensive	sampling	is	theoretically	advantageous	when	mon-
itoring	spatially	heterogeneous	populations	(Rhodes	&	Jonzén,	2011).	
In	our	 simulations,	 spatial	 heterogeneity	 emerged	 from	uneven	dis-
tribution	of	habitat	and	random	variation	 in	 local	abundance	among	
occupied	transects.	The	benefits	observed	here	with	shorter	transects	
and	single	surveys	could	reflect	advantages	of	spatially	extended	sam-
pling.	 Panel	 designs,	 however,	 did	not	 inherently	 change	 the	 target	
of	inference,	and	so	their	results	more	definitively	demonstrated	po-
tential	 advantages	with	 spatially	 extended	 sampling.	 In	 contrast,	 ig-
noring	 heterogeneity	 inherent	 in	 continuously	 distributed	 territorial	
species	may	obscure	advantages	of	panel	designs	(Bailey	et	al.,	2007;	
Urquhart	&	Kincaid,	1999).

Not	all	 spatial	extensions	 to	sampling	were	beneficial.	Given	a	
repeat-	survey	design,	we	gained	nothing	by	reducing	repeat	surveys	
to	monitor	more	transects.	Such	strategies	require	high	detectability	
(MacKenzie	&	Royle,	 2005)	 likely	 uncharacteristic	 of	 sparsely	 and	
continuously	 distributed	 territorial	 species	 (see	 above).	 The	 lack	

F IGURE  8 Correspondence	of	
estimated	occupancy	trends	(λ̂ψ) with true 
abundance	(λN)	and	occupancy	(λψ) trends. 
Trends	were	estimated	with	repeat-	survey	
constant- p	(a)	and	yearly-	p	(b)	occupancy	
models,	and	logistic	regression	analyzing	
single-	survey	data	(c).	Red	and	blue	
dots	mark	perfect	correspondence	with	
actual	abundance	and	occupancy	trends,	
respectively.	Root	mean	squared	error	
quantifies	the	overall	estimation	error	
with	respect	to	abundance	(RMSEN) and 
occupancy	(RMSEψ) trends
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of	benefit	with	50%	panels	may	reflect	site	fidelity,	 fixed	at	100%	
in	our	simulations.	By	monitoring	different	 transects	 in	successive	
years,	 the	 number	 and	 distribution	 of	 individuals	 along	 surveyed	
transects	varied	interannually,	potentially	obscuring	trends.	White-	
headed	 woodpecker	 do	 exhibit	 site	 fidelity	 (Garrett	 et	al.,	 1996),	
so	panel	design	benefits	could	trade-	off	with	benefits	of	sampling	
the	same	sets	of	individuals	in	successive	years.	In	reality,	however,	
population	 processes	 (e.g.,	 dispersal	 and	 turnover)	 could	 also	 ob-
scure	trends.	The	extent	of	paneling	needed	to	benefit	power	would	
therefore	depend	on	levels	of	spatial	versus	temporal	heterogeneity	
in	population	 trends	 (Rhodes	&	Jonzén,	2011),	 the	 latter	of	which	
was	 omitted	 from	 simulations	 here.	 Additionally,	 panel	 designs	
could	 limit	study	of	processes	underlying	occupancy	dynamics,	for	
example,	colonization	and	persistence	(Bailey	et	al.,	2007).

4.3 | Study limitations

Our	 simulations	 did	 not	 include	 spatial	 or	 temporal	 stochasticity	 in	
population	dynamics,	individual	movement	between	years,	or	behav-
ioral	interactions	between	neighbors	all	of	which	could	modulate	oc-
cupancy	estimates	or	trends	(Reynolds,	Wiens,	Joy,	&	Salafsky,	2005;	
Sauer,	Fallon,	&	Johnson,	2003;	Warren,	Veech,	Weckerly,	O’Donnell,	
&	Ott,	2013).	By	not	accounting	for	these	realities,	power	estimates	
may	be	 liberal,	 and	 therefore	probably	best	used	 to	 inform	a	 lower	
bound	for	sample	size.	Accordingly,	we	recommend	≥120	or	≥90	tran-
sects	with	single-	survey	or	repeat-	survey	monitoring,	respectively,	of	
white-	headed	woodpeckers	across	our	study	region.

Our	 treatment	of	site	 fidelity,	however,	 is	conservative.	For	sim-
plicity,	we	simulated	populations	with	100%	site	fidelity	and	zero	im-
migration	or	recruitment,	and	to	avoid	artifacts	of	these	assumptions,	
analysis	 models	 assumed	 occupancy	 varied	 independently	 among	
years.	 In	reality,	models	correctly	specifying	uncertainty	arising	from	
additional	population	processes	 (e.g.,	Royle	&	Kéry,	2007)	could	 im-
prove	 power	 to	 observe	 trends	 (although	with	 likely	 increased	 data	
demands).	Models	that	correctly	specify	habitat	relationships	with	oc-
cupancy	could	also	help.	Given	the	potentially	counteracting	features	
of	simulations,	we	expect	power	estimates	were	sufficiently	informa-
tive	to	compare	alternative	study	designs.

Simulations	 ignored	spatial	variation	in	home	range	size,	which	
can	 confound	 interpretation	 of	 occupancy	 estimates	 and	 trends	
drawn	from	repeat	surveys	(Efford	&	Dawson,	2012).	Simulations	in-
cluding	such	realities	could	further	inform	repeat-	survey	monitoring.	
Alternatively,	single-	survey	monitoring	would	avoid	this	 issue,	and	
could	be	complemented	with	focused	study	of	space	use	dynamics.

Our	treatment	of	survey	cost	did	not	fully	account	for	travel	time	
among	 transects.	We	 expect	 little	 difference	 in	 cost	 of	 repeating	 a	
survey	 versus	 surveying	 a	 new	 transect,	 but	 travel	 time	 could	 limit	
transect	number	more	 than	 length.	To	 fully	 inform	study	design,	bi-
ologists	would	need	 to	attach	costs	 to	 scenarios	explored	here.	For	
white-	headed	woodpeckers,	clustering	transects	with	sufficient	spac-
ing	for	statistical	 independence	(e.g.,	2–5	km	assuming	home	ranges	
≤1	km	radius)	could	reduce	travel	time,	although	potentially	raising	the	
need	to	account	for	spatial	heterogeneity	at	coarser	scales	(e.g.,	among	
sub-	regions).

F IGURE  9 Statistical	power	(percent	
simulations	with	95%	BCI	<1)	and	trend	
estimation	error	(RMSE)	for	the	repeat-	
survey	constant-	p	occupancy	model	
under	alternative	sampling	allocation	
strategies. Error is calculated relative to 
the	actual	abundance	trend,	λN	=	0.98	
(RMSE	=	RMSEN).	Strategies	depicted	
involve	monitoring	rotating	subsets	of	
transects	each	year	(bar	color)	or	fewer	
points	per	transect	(x-	axis)	in	exchange	for	
monitoring	more	transects.	Parenthetic	
values	indicate	the	total	number	of	
transects	monitored	over	the	20-	year	study	
period
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F IGURE  10 Statistical	power	(percent	
simulations	with	95%	BCI	<1)	and	trend	
estimation	error	(RMSE)	for	the	single-	
survey	logistic	regression	under	alternative	
sampling	allocation	strategies.	Error	is	
calculated	relative	to	the	actual	abundance	
trend,	λN	=	0.98	(RMSE	=	RMSEN). 
Strategies	depicted	involve	monitoring	
a	rotating	subsets	of	transects	each	year	
(bar	color)	or	fewer	points	per	transect	
(x-	axis)	in	exchange	for	monitoring	more	
transects. Parenthetic values indicate the 
total	number	of	transects	monitored	over	
the	20-	year	study	period

F IGURE  11 Statistical	power	(percent	
simulations	with	95%	BCI	<1)	and	trend	
estimation	error	(RMSE)	for	the	repeat-	
survey	constant-	p	model	for	scenarios	that	
vary	the	proportion	of	transects	surveyed	
a	second	time	each	year	in	exchange	
for	monitoring	more	transects.	Error	is	
calculated	relative	to	the	actual	abundance	
trend,	λN	=	0.98	(RMSE	=	RMSEN). 
Parenthetic values indicate the total 
number	of	transects	monitored	over	the	
20-	year	study	period
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4.4 | Additional considerations and broader 
implications

Agency	biologists	often	conduct	 repeat	surveys	 to	estimate	detect-
ability	and	thereby	improve	credibility	of	trend	estimates.	This	strat-
egy	 potentially	 implies	 an	 overly	 rigid	 allocation	 of	 effort	 between	
sampling	to	inform	occupancy	versus	detectability.	Repeat	surveys	of	
mobile	species	may	unwittingly	focus	effort	toward	tracking	distribu-
tional	shifts,	which	can	be	harder	to	observe	and	not	necessarily	more	
relevant	 to	 conservation	 than	 changes	 in	 abundance.	 Additionally,	
practitioners	often	discount	the	potential	for	detectability	to	change	
with	changing	abundance	(e.g.,	Ahumada,	Hurtado,	&	Lizcano,	2013;	
van	Strien,	van	Swaay,	&	Termaat,	2013;	Zielinski	et	al.,	2013),	which	
may	limit	explicit	inference	of	abundance	trends	versus	range	dynam-
ics	from	occupancy-	based	trend	estimates.	Estimating	detectability	is	
only	useful	 if	doing	so	 improves	 inference	of	underlying	population	
processes	 or	 accounts	 for	 interannual	 variability	 in	 observer	 error.	
The	former	requires	considering	which	processes	can	be	more	readily	
inferred	 by	 accounting	 for	 detectability	 at	 the	 scale	 it	 is	measured.	
If	 instead	 biologists	 are	 solely	 concerned	with	 controlling	 observer	
error,	monitoring	 of	 population	 indices	may	 be	more	 cost-	effective	
while	providing	equivalent	or	stronger	inference	of	population	change	
(Hutto,	2016;	Johnson,	2008;	Welsh	et	al.,	2013).

Despite	 growing	 sophistication	 of	 occupancy	 models	 (Bailey,	
MacKenzie,	&	Nichols,	2014),	heterogeneity	arising	from	locally	vary-
ing	abundance	and	poorly	defined	home	range	boundaries	(Efford	&	
Dawson,	 2012)	will	 continue	 to	 challenge	monitoring	 efforts,	 espe-
cially	where	 funding	constrains	data	and,	consequently,	model	com-
plexity.	Simulations	can	help	explore	our	capacity	for	 inference	with	
models	 necessarily	misspecified	due	 to	 limited	data.	General	 power	
formulas	available	for	occupancy	models	ignore	spatial	heterogeneity	
(Guillera-	Arroita	&	Lahoz-	Monfort,	2012;	MacKenzie	&	Royle,	2005).	
Spatially	explicit	simulations	therefore	complement	these	tools	for	tai-
loring	sampling	designs	to	particular	study	systems.

Information	 on	 regional	 trends	 should	 be	 combined	 with	 in-
formation	 on	 various	 population	 parameters	 measured	 at	 differ-
ent	 scales	 to	 fully	 inform	 species	 conservation	 status	 (Nichols	 &	
Williams,	 2006).	 For	 example,	 other	 studies	 currently	 underway	
examine	 forest	management	 effects	 on	white-	headed	woodpecker	
nest	densities,	nest	survival,	and	habitat	use	(Mellen-	McLean	et	al.,	
2015).	Statistical	models	can	now	integrate	multiple	sources	of	data	
to	better	inform	parameter	estimation	(Dorazio,	2014;	Nichols	et	al.,	
2008).	Simulations	that	explicitly	and	distinctly	describe	population	
from	observation	processes	could	inform	sampling	design	to	support	
these	approaches.
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