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Abstract: Three-dimensional point data acquired by Terrestrial Lidar Scanning (TLS) is used as ground
observation in comparisons with fire severity indices computed from Landsat satellite multi-temporal
images through Google Earth Engine (GEE). Forest fires are measured by the extent and severity of
fire. Current methods of assessing fire severity are limited to on-site visual inspection or the use of
satellite and aerial images to quantify severity over larger areas. On the ground, assessment of fire
severity is influenced by the observers’ knowledge of the local ecosystem and ability to accurately
assess several forest structure measurements. The objective of this study is to introduce TLS to
validate spectral burned ratios obtained from Landsat images. The spectral change was obtained
by an image compositing technique through GEE. The 32 plots were collected using TLS in Wood
Buffalo National Park, Canada. TLS-generated 3D points were converted to voxels and the counted
voxels were compared in four height strata. There was a negative linear relationship between spectral
indices and counted voxels in the height strata between 1 to 5 m to produce R2 value of 0.45 and
0.47 for unburned plots and a non-linear relationship in the height strata between 0 to 0.5m for burned
plots to produce R2 value of 0.56 and 0.59. Shrub or stand development was related with the spectral
indices at unburned plots, and vegetation recovery in the ground surface was related at burned plots.
As TLS systems become more cost efficient and portable, techniques used in this study will be useful
to produce objective assessments of structure measurements for fire refugia and ecological response
after a fire. TLS is especially useful for the quick ground assessments which are needed for forest
fire applications.

Keywords: forest fire; google earth engine; terrestrial laser scanner; laser; ground validation

1. Introduction

The area burned by a fire and the severity are two key descriptors of forest fires. Fire severity is
directly related to the amount of vegetation consumed by fire, and the regeneration rates of vegetation
after a fire [1]. This removal of vegetation is a contributing factor to post fire erosion [2]. Quantifying fire
severity can be difficult, and improving the accuracy of the assessment will aid in post fire restoration
efforts. Current methods of assessing fire severity are usually limited to on-site visual inspection
of a post fire landscape [3], or the use of satellite and aerial images to quantify severity over larger
areas. For satellite image analysis, the Normalized Burn Ratio (NBR) is a common spectral index
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used to assess fire severity. NBR uses the near-infrared and mid-infrared spectral regions to create a
normalized index.

NBR = (ρMIR − ρNIR)/(ρMIR + ρNIR), (1)

where ρMIR is the mid-infrared and ρNIR is the near-infrared spectral reflectance band.
NBR is widely utilized in fire monitoring protocols and is used to determine the extent of the area

burned [4,5]. The difference between pre- and post-fire NBR (differential NBR, dNBR) has been shown
to be more effective at describing fire severity than the differential Normalized Difference Vegetation
Index (dNDVI) [6]. Related to dNBR is the Relative differenced NBR (RdNBR). Miller and Thode [7]
proposed RdNBR as an improved version of dNBR.

dNBR = (NBRprefire − NBRpostfire), (2)

RdNBR = dNBR/
√

ABS
(
NBRprefire

)
, (3)

where ρMIR is the mid-infrared, ρNIR is the near-infrared, and ρRed is the red spectral reflectance
band. The NBR ranges from −1 to 1. dNBR ranges from −2 to 2. A high value of dNBR and RdNBR
indicates high fire severity.

Which index is better at describing fire severity is dependent on several factors [1,8]. The deviation
of the indices from on the ground assessments of fire severity can be related to seasonal and topographic
conditions [9]. In such instances, the indices can have a limited capability to accurately characterize
fire severity [10–12].

On the ground, one of the most widely used methods to characterize fire severity is the Composite
Burn Index (CBI, [3]). The CBI is mainly derived from visual estimation and subjective judgement and
is a simple and fast approach. However, CBI is prone to observer bias. The values are influenced by
the observers’ knowledge of the local ecosystem and ability to accurately assess several forest structure
measurements [13]. It is still unknown how structural components of the post fire forest influence the
spectral signatures detected by satellites, as well as the fact that CBI assigns a severity value from both
overstory and understory vegetation assessment.

To model the structural components of a post fire forest in relation to RdNBR,
Miller and co-authors [14] used the Forest Vegetation Simulator (FVS, [15]). The FVS was used
with data from the US Forest Service’s Forest Inventory and Analysis (FIA) to simulate forest structure
attributes for a range of variables. FVS was accurate in modeling resultant forest structure attributes for
high severity fires, but failed in moderate and low severity burns. There is a need for high-resolution
quantification of three-dimensional forest structure in relation to fire severity. For this study, a terrestrial
laser scanner is used to produce objective and highly detailed 3D scans of forest structure at various
levels of fire severity.

Three-dimensional point clouds acquired through TLS have been used in numerous ecosystem
studies, including tree stem reconstruction [16,17], measuring biomass of saplings [18], determining leaf
angle and distribution [19], quantifying canopy gaps [20], and various other ecological applications [21].
Fine scale measurements from TLS have also been used for forest inventory [22], biomass allometry [23],
and tree species identification [24]. Using multi-temporal TLS data, small changes in tree height have
been quantified [25], as well as spring phenology [26], crown competition [27], and biomass [28].
TLS has also been used previously to detect forest structural change caused by fire [29]. TLS has proven
to be a valuable tool in not only quantifying above-ground biomass and structure, but also measuring
fine scale change.

The objective of this study is to utilize terrestrial lidar to quantify and compare forest structure
attributes with the spectral signatures of Landsat satellite images. This study notably proposes a
technique to compare the forest structure in different height strata with burned and unburned spectral
reflectance from satellite images.
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2. Materials and Methods

2.1. Study Site

The study site was located at Wood Buffalo National Park (WBNP, Figure 1) in Northwest
Territories and Alberta, Canada. WBNP became a national park in 1922 and is a designated wildlife
refuge. Lightning is the major source of forest fires [30,31], and the park is located within the area
known as the fire hot spot of Canada [32,33]. The dominant tree species are Jack pine (Pinus banksiana
Lamb.), aspen (Populus tremuloides Michx.), balsam poplar (Populus balsamifera L.), white spruce (Picea
glauca (Moench) Voss), black spruce (Picea Mariana (Mill.) BSP), and tamarack (Larix laricana (Du Roi)
K. Koch).
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Figure 1. The study site with Terrestrial Lidar Scanning (TLS) locations denoted by �. The thin black
lines are roads and the shaded polygons are recently burned areas (within the last 3 years). To the right,
panoramic views of TLS point clouds of different fire conditions.

2.2. Methodology

Species composition and stand density are major factors that influence the spectral signature of an
area. A change in the spectral reflectance observed by a satellite between either two different sites,
or the same site at different times, is likely due to differences in species composition or stand density.
The area of our study, i.e., within the boreal forest biome, is covered mainly by homogeneous stands of
the same age and species. The spectral signature of the area is thus also mainly homogenous, unless
altered by some disturbance event (e.g., fire). The area largely consists of native forest stands that have
been self-thinning and undergoing a natural succession process [34,35]. Forest succession entails a
relatively simple structural change, and stand development can be related to the spectral change.

The spectral change due to fire is derived from pre- and post-fire Landsat image analysis using the
Google Earth Engine platform. The structural components of the forest are measured using a Terrestrial
Laser Scanner (TLS) to generate a 3D model of the area. The scans were taken in September of 2016.

To identify the spectral change, both dNBR and RdNBR are calculated. Our area of interest
covered 44,807 km2 requiring several Landsat image tiles to cover the extent. We utilize Google Earth
Engine (GEE) to visualize and analyze the satellite imagery and use the GEE servers to compute dNBR
and RdNBR. The use of an online platform greatly speeds up the processing and spares us the onerous
task of downloading and processing gigabytes of image data [36]. To compute dNBR and RdNBR, pre-
and post-fire dates need to be identified. However, the fires happened in different times and places
within our 44,807 km2 study site. To identify the location and date of each fire, a composite imaging
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technique is used to make pre- and post-fire images. The composite image technique uses a stack of
time-series images to select and store the pixel value when the criteria are matched. In this study, NBR
values are stored when NDVI is maximum for pre-fire condition and NBR is minimum for post-fire
condition. This process is conducted within the study area using multi-temporal Landsat 8 images
with a 16-day revisit cycle during the year of 2016. The images are only selected during the fire season
from June 1st to October 1st. Using this date range, we avoid erroneous values caused by snow on the
ground in spring and winter. An unburnt area has a high NDVI value while the same area post fire has
a low NBR value. The difference between those values is used to produce dNBR and RdNBR values
for each pixel.

The dNBR and RdNBR values are compared to structure measurements obtained with TLS.
The portable laser sensor TX5 (Trimble Inc., Sunnyvale, CA, USA) is used for data collection. The 3D
scan data has the potential to quantify the structural differences more accurately between unburned
and recently-burned sites, compared to human visual observation. The position of the scan locations is
recorded with a consumer grade GPS unit (Montana 600, Garmin Inc., Olathe, KS, USA) with a location
error of 5 m. This locational error is far less than the half pixel size of 30 m Landsat imagery. The TX5
TLS system uses phase shift detection to generate 3D points and the horizontal and vertical scan line
resolution is set to 0.0167◦.

Within our study site, there is a road network bisecting the park in north/south and east/west
directions. The TLS locations are chosen along this road network for ease of data collection (Figure 1).
A systematic random sampling method is used to select sites to cover the diverse range of tree height
and species within the large WBNP area. The scanner collects data every 10 km along the road
(black dots along the road in Figure 1). The scanning locations are at least 30 m away from the road
(perpendicular to the angle along the road) to insure the scan location is within a Landsat pixel that
does not include reflectance from the road. The total 32 TLS scans were collected during Sept. 2016 and
covered the diverse structural range from unburned sites to sites with high severity burn (Figure 1).
All TLS scanning locations (n = 32) are divided into two groups: unburned plots (no fire since 1981,
n = 21) and recently burned plots (most recent fire within the last 3 years, n = 11). Historical fire dates
are determined using a fire map provided by the Canadian Park Services.

A multi-step process is used to derive structural metrics from the 3D TLS point clouds (Figure 2).
A Digital Terrain Model (DTM) is created from the raw 3D point cloud using the climbing and sliding
method [37]. The height of the points is normalized using the derived DTM. Only points within a 15 m
radius of the scan position are used. A 15 m radius provided a point density sufficient to generate
DTMs and is the plot size suggested by the CBI field protocol. The CBI field protocol includes cover
change estimation, species identification, dead or live judgement, color change assessment, and soil
disturbance estimation. They are not directly comparable to the number of voxels. However, the 3D
data can contribute structure measurements by height strata (Box 1). The structure assessment is a
major factor to determine CBI values. Therefore, this study is not aimed to compare values between
CBI and TLS 3D data. The CBI data needs to be collected twice: right after fire for Initial Assessment
(IA) and one year after fire for Extended Assessment (EA). Our field samplings were not collected
right after fire. The timing to take our data is different from CBI.

To quantify the vertical forest structure of the scan sites, voxels are created at a 0.25 m resolution.
The voxel size is fitted to the average stem diameter of this study site. A voxel is created when there
is a laser return point located within a 0.25 m3 grid cell. The number of voxels at different height
strata is counted. There are four height strata adapted to this voxel analysis from the original CBI
definition: 0 m to 0.5 m (ground surface), 0.5 m to 1m (shrubs), 1 m to 5 m (shrubs and understory),
and 5 m above (overstory trees). The number of voxels at each stratum is correlated with the spectral
reflectance measured by Landsat. The voxel is used rather than counting the number of raw returns,
because the voxel approach can reduce the bias caused by the distance from the sensor and normalizes
point density as points are inherently dense and close to the TLS sensor.
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The relationship between counted voxels and spectral indices is examined at plot and strata levels.
The total voxel count per plot is used to obtain the general relationship. The counts are divided into
strata to determine which strata are more significantly related with the spectral change. For the specific
strata, the stronger or strongest correlation is found. A linear or non-linear (2nd order polynomial)
equation is fitted to the distribution between counted voxels and spectral indices. Both equations
used in this study are assessed with R2 values to indicate how strong the correlations are. Moreover,
hypothesis tests are applied to test the difference between the linear and non-linear case. The t-test
is used for the linear case and Shapiro-Wilk normality test is used for the goodness of fit for the
non-linear case. Both cases used a significance level of 0.05. The statistical tests are indicated by p < 0.05
(a significant t-test result) for the linear case and p > 0.05 (a not-significant result with Shapiro-Wilk
normality) for the non-linear case.

Box 1. Comparison between Composite Burn Index (CBI) and Terrestrial Lidar Scanning (TLS) measurements.
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The CBI is based on visual estimation and judgement to assess vegetation coverage at different
height strata (Box 1). To simulate human vision and to derive values based more closely on the CBI
protocol, all 3D data are converted to a spherical coordinate system to create a human vision-oriented
image (Figures 2 and 3). Based on TLS sensor location, all XYZ 3D coordinates of voxels are converted
to three variables in spherical coordinates: distance, horizontal angles (θ), and vertical angles (Φ).
The degrees of horizontal and vertical angles are displayed in X and Y axis to make a human
vision-oriented image shown in Figure 3. Then, the counted pixels on the image are compared with
counted voxels to quantify the visual bias for the different height strata. The voxels displayed in
orthogonal coordinates are paired with the satellite image displayed in plain view. To visualize
the bias effect, the voxels in each height stratum in the orthogonal coordinates are counted in total,
and the number of pixels (in spherical coordinates) visible on the human vision-oriented image in each
height strata are also counted. To compare the voxelization method with our simulation of CBI field
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assessment, the counted total is normalized with the maximum number on a scale from 0 to 1, for each
of the height strata, in each scan. A natural logarithmic equation is applied to obtain the non-linear
relationship of the visual bias between x in spherical and y in orthogonal coordinates.
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Figure 3. Vertical voxel distribution and counting in orthogonal coordinate (left) and human
vision-oriented image in spherical coordinates (right).

3. Results

There were 32 TLS scans in total. Eleven of these were in recently burned plots and 21 in unburned
plots. There was a linear relationship between the total number of voxels within each scan in the
unburned plots, and satellite derived dNBR (R2 value of 0.54, p value < 0.05) and RdNBR values
(R2 value of 0.60, p value < 0.05) (Figure 4). In the burned plots, there was a non-linear correlation
with R2 values of 0.75 (p value > 0.05) and 0.73 (p value > 0.05) for dNRR and RdNBR respectively
(Figure 4). Similar relationships of dNRR and RdNBR were compared to the number of voxels at each
of the four height strata (Figures 5 and 6). There was a negative linear slope for unburned plots and a
non-linear relationship for recently burned plots.
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(marker �: recently burned plot, �: unburned plot, the bold fonts of R2 values are statistically significant
for the linear case and not-significant for the non-linear case with a significant level of 0.05).

In the recently burned plots, the strongest relationship between voxel counts and dNBR and
RdNBR values was in the 0 to 0.5 m height stratum with R2 values of 0.56 for dNBR ( p value > 0.05)
and 0.59 for RdNBR ( p value > 0.05). Additionally, for burned plots there were weak correlations in
the 0.5 to 1 m and above 5 m height strata with R2 values of 0.18 and 0.28 (p value > 0.05) for dNBR
respectively and R2 values of 0.27 and 0.27 (p value > 0.05) for RdNBR respectively. The unburned
plots had the strongest relationship between voxel counts and dNBR and RdNBR values in the height
stratum between 1 to 5 m, producing R2 values of 0.38 for dNBR (p value < 0.05) and 0.41 for RdNBR
(p value < 0.05) in Figures 5 and 6. The results from Figures 5 and 6 found specific height strata only
related with the spectral change.

There was a non-linear relationship (visual bias) between the voxel approach and the pixel-based
estimation in the three lower strata (0 to 0.5 m, 1 m to 1.5 m, and 1.5 m to 5 m) with a linear relationship
in the upper (+5 m) strata (Figure 7). The bias was greatest in the lowest strata.



Forests 2019, 10, 444 9 of 13
Forests 2019, 10, x FOR PEER REVIEW 9 of 13 

 

 

Figure 7. The relationship between the number of pixels in spherical coordinates (x) and the number 

of voxels in orthogonal coordinates (y) by different height strata (both axes are normalized by the 

maximum number and all R2 values are statistically significant for the linear case and not-significant 

for the non-linear case with a significant level of 0.05). 

4. Discussion 

Comparing dNBR values with RdNBR and the total number of voxels per plot (Figure 4), the 

range of RdNBR was wider than the range of dNBR because of the effect of including pre-fire 

vegetation conditions in the equation. There was no significant difference between R2 values 

presented in Figures 5 and 6. 

For unburned plots, Figures 5 and 6 show that increased numbers of voxels in the height strata 

(1 to 5 m) were negatively correlated with dNBR and RdNBR, because more vegetation structure 

developed at the 1 to 5 m height stratum produced less spectral variability in dNBR and RdNBR. The 

post-fire NBR values approached the pre-fire NBR values due to the structural change at different 

height strata. For burned-plots, the negative correlation in the lowest (i.e., ground) strata indicated 

vegetation recovery of the strata. This process of using voxels improves not only the quality of ground 

observation data but also allows for better correlation with satellite images. Improved illumination 

values were collected from multi-temporal images through the image compositing process to 

compute dNBR and RdNBR, and higher precision 3D data were obtained to compare between burned 

and unburned plots. 

The dNBR and RdNBR are relative measurements between pre and post fire NBR. If the site has 

experienced no fire, they are presumed to be zero. However, there were some changed values at 

unburned plots in Figures 5 and 6. The slight change was related to the structural difference of the 

height strata between 1 to 5 m. This shows an advantage to using high precision 3D data to detect 

small changes in that height stratum. This method is useful to describe ecological response to fire in 

burned plots and structural development in unburned plots. Through this process, the specific height 

strata related with the spectral change are identified by the stronger correlations. 
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for the non-linear case with a significant level of 0.05).

4. Discussion

Comparing dNBR values with RdNBR and the total number of voxels per plot (Figure 4), the range of
RdNBR was wider than the range of dNBR because of the effect of including pre-fire vegetation conditions
in the equation. There was no significant difference between R2 values presented in Figures 5 and 6.

For unburned plots, Figures 5 and 6 show that increased numbers of voxels in the height strata
(1 to 5 m) were negatively correlated with dNBR and RdNBR, because more vegetation structure
developed at the 1 to 5 m height stratum produced less spectral variability in dNBR and RdNBR.
The post-fire NBR values approached the pre-fire NBR values due to the structural change at different
height strata. For burned-plots, the negative correlation in the lowest (i.e., ground) strata indicated
vegetation recovery of the strata. This process of using voxels improves not only the quality of ground
observation data but also allows for better correlation with satellite images. Improved illumination
values were collected from multi-temporal images through the image compositing process to compute
dNBR and RdNBR, and higher precision 3D data were obtained to compare between burned and
unburned plots.

The dNBR and RdNBR are relative measurements between pre and post fire NBR. If the site
has experienced no fire, they are presumed to be zero. However, there were some changed values at
unburned plots in Figures 5 and 6. The slight change was related to the structural difference of the
height strata between 1 to 5 m. This shows an advantage to using high precision 3D data to detect
small changes in that height stratum. This method is useful to describe ecological response to fire in
burned plots and structural development in unburned plots. Through this process, the specific height
strata related with the spectral change are identified by the stronger correlations.

For burned plots, the relationship between counted voxels and spectral indices was non-linear
(Figures 4–6) and was related to the ecological responses of the site conditions. High spectral change
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(in x axis) with low voxel count (in y axis) characterizes the severely burned sites immediately after
fire; middle spectral change with high voxel count means live vegetation remained after fire; and low
spectral change with low voxel count means no vegetation recovery after fire.

The bias shown in Figure 7 helps to understand the non-linear relationship [8,14,38–41] between
satellite image analysis such as dNBR and RdNBR and the ground visual assessment of CBI.
Previous studies have shown that when simulated CBI was prepared from satellite images there was
a linear relationship [42]. However, when the canopy fraction was included in the derived CBI [43],
the relationship became non-linear. If the site has vegetation less than 5 m tall, then height strata need
to be implemented in the severity measurement; the visual bias produces more deviation from the
correlation between satellite and ground observation. The 3D structural data help to visualize the bias
in observed vegetation coverage.

The utility of a 2D severity map from spectral indices such as dNBR and RdNBR is limited to
assess severity. With 3D ground observations, the spectral change can be addressed by structural
change. A good example of this application is fire refugia. The vegetation recovery takes different
trajectoris with the initial structure remaining after fire. The severity assessment with 3D ground
observation helps to characterize the difference.

Three years were required to detect an ecological response at this study site. The severity is
measured by the most immediate fire effects as an immediate assessment and additional responses
of initial severity as an extended assessment. The duration of vegetation recovery depends on the
ecosystem and the climate of the site. The recovery rate is slow in boreal forest region and the recent
fire burned with high intensity. With high intensity fire and slow vegetation recovery, the spectral
change observed over burned plots is more related with ecological response. The three year interval
was needed to detect the ecological response for fire severity. Monitoring ecological response after fire
is an important application of TLS ground observation.

With regard to TLS ground sampling, one third of samples only came from burned plots
(Figures 5 and 6). In this study site, the sampling locations were limited to places along the roads
due to difficult accessibility. The number of burned plots facing roads were more limited than the
number of unburned plots. That is why only one third of samples were from burned plots. The ground
sampling strategy can be improved to capture more diverse fire severity.

A TLS limitation for collecting ground forest structure data includes occlusion of laser returns
by forest obstacles within the scanning view angle [44,45]. In this study, a sampling approach is
applied that isn’t dependent on capturing occlusion free 3D data [16,17]. Our sampling strategy was to
compare 3D data among plots by using a single scanning location. Multiple-scans per plot would be
better to capture more complete structure measurements as occlusion is eliminated, but multiple scans
invite more sampling variation with additional factors of scan positioning and angle being introduced.
The single scanning strategy has been adopted to compare different vertical vegetation profiles and
describe different structural conditions [46]. Calders and co-authors found that a single scanning was
enough to describe various vertical plant profiles. This TLS study does not aim to provide absolute
accuracy in tree measurements of the sites, but the results provides more accurate “relative differences”
among plots without any subjective judgement, which could not be achieved by conventional visual
estimates. This 3D ground truth is needed more in validating fine scale, post fire change when being
estimated by high-resolution optical [47] and radar images [48].

5. Conclusions

Forest fire is measured by extent and severity of fire. The objective of this study was to propose
a new ground observation technique using 3D data collected by Terrestrial Laser Scanner (TLS) in
the field, and to determine its value for ground validation of spectral change on Landsat images.
The spectral change between pre- and post-fire is compared with structural differences amongst the
sites with different fire severities. To compare them, TLS generated 3D data was changed to voxels,
and the number of voxels was counted and compared with dNBR and RdNBR in four different height
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strata. There was a negative linear relationship in the height strata between 1 m to 5 m for unburned
plots and a non-linear relationship in the height strata between 0 to 0.5 m for burned plots. Shrub and
understory development was detected in tall shrub strata for unburned plots, and vegetation recovery
in the lowest height strata (0 to 0.5 m) was detected for burned-plots. Furthermore, there was a
non-linear relationship between visual assessment of CBI and burn indices derived from satellite
images. Fine resolution remote sensing imagery is commonly available and accessible through GEE,
which will require a more accurate validation method from ground data collection. To make it efficient
to collect data and to match the precision of high-resolution data, ground sampling using TLS to derive
3D data will play an important role in improving the correlation between satellite and field data. TLS is
especially useful for quick ground assessments which are needed for forest fire applications.
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