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Abstract 
Monitoring ecosystem status and recovery potential is critical for natural resource 

management. Recent evidence in ecological studies suggest a fundamental link between 
ecosystem physical structure and function, including resistance and recovery. Resistance and 
recovery properties of the imperiled Great Basin ecosystems are of critical utility in management 
with direct ties to abiotic and biotic site characteristics. Our work demonstrates that UAS surveys 
can provide novel insights into community resistance and resilience by measuring physical 
structure across a range of spatial scales. Specifically, we investigated how vegetation structure, 
measured as structural heterogeneity, responds to wildfire effects and recovery processes and 
whether the response is scale-dependent. We conducted a survey of a representative set of shrub 
stands that partially burnt between 1996 and 2015, and span a wide range of abiotic conditions. 
We found that shrubland structural heterogeneity was sensitive to wildfire effects and shrub 
recruit abundance, but this sensitivity was scale-dependent and different for the two ecological 
processes. Wildfire effects were most prominent at the intermediate scale resolutions (2.34 m), 
while the abundance of shrub recruits required higher resolution structural information (0.29 m). 
Surprisingly, structural heterogeneity at the very fine resolution (< 0.30 cm) was superfluous and 
did not provide additional value to the predictive models of recruit abundance. Our project 
demonstrates a low-cost monitoring framework for quantitative measures of shrubland resistance 
and recovery potential. We demonstrate how UAS platforms can provide landscape-level data 
while optimizing the resolution and extent of the survey for the ecological process of interest.  
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Objectives 
The original project objectives underwent minor conceptual changes during the course of 

the project. These changes were motivated by recent developments in the ecological literature 
and more directly address management-oriented research questions and methodologies. The 
original set of objectives included:  

• Constructing UAS-based demographic monitoring and modeling framework, 
including quantifying growth, survival, and reproduction of big sagebrush 
individuals.  

• Improving landscape predictions of big sagebrush recovery by incorporating detailed 
UAS data into demographic models, including subspecies, size structure, and 
environmental heterogeneity.  

The updated objectives simplify the assumptions and data requirements of the original 
objectives, and approach the ecological recovery more comprehensively. Specifically, we 
investigate the relationship between the physical structure, disturbance effects, and recovery in 
post-wildfire landscapes. We answer the following questions to guide UAS applications for 
ecological monitoring and assessment:  

• What is the most sensitive spatial scale of vegetation structure to wildfire effects and 
stand-level changes? 

• Can the physical structure of vegetation community predict the abundance of shrub 
recruits, and what is the optimal spatial scale of structure for such predictions? 
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Background 
Anthropogenic pressures increasingly threaten the integrity of dryland ecosystems 

(Berdugo et al., 2022; Requena-Mullor et al., 2019). The Great Basin of the Intermountain 
Western US exemplifies arid land degradation, motivating management action to improve 
ecosystem integrity (Davies et al., 2011; Pilliod et al., 2021). The Great Basin shrublands from 
low and high elevations face functionally distinct challenges, from intensified grass-fire cycles to 
conifer encroachment (Davies et al., 2011). Across these environments, a decline in the shrub 
component is a common feature that dramatically changes vegetation structure. Therefore, the 
establishment of new shrubs is a critical ecological process representing the opposing force to 
disturbance pressures. Importantly, shrub establishment may show feedbacks with the spatial 
structure of vegetation (Mahood, Koontz, et al., 2021; Miriti, 2006; Urza et al., 2019). 
Understanding these feedbacks as drivers of recovery may inform restoration treatments with 
long-lasting effects on ecosystem trajectory (Arkle et al., 2022; Shriver et al., 2019). Overall, 
structural complexity directly relates to two key challenges in the region. First, as an indicator of 
key ecosystem health metrics, including the detection of transient demographic shifts (Shriver et 
al., 2019) and invasion status (Pilliod et al., 2021; Reinhardt et al., 2020). Second, structure-
recovery feedbacks may inform management strategies to increase resilience and recovery 
potential that will help overcome major bottlenecks in Great Basin conservation efforts (Arkle et 
al., 2014; Pyke et al., 2020; Shriver et al., 2018).  

Recent advances in remote sensing further illuminate the relationship between structure 
and function (Atkins et al., 2022; Ilangakoon et al., 2021; LaRue et al., 2019). Unoccupied aerial 
systems (UAS) enable a novel, detailed view of vegetation structure at spatial extent exceeding 
those using field methods (Cunliffe et al., 2016; Gillan et al., 2020; Howell et al., 2020). 
Nevertheless, analyzing the pathways between structural complexity and ecosystem function will 
often require a multi-scale approach (Wu, 2004). The problem of identifying appropriates scales 
of heterogeneity emerges in both theoretical and practical aspects of ecology. Specifically, 
disturbance effects and ecological indices that measure ecosystem shifts are scale specific, and 
management response may depend on the perceived ecosystem state and the need for an 
intervention (Standish et al., 2014). In addition to a growing recognition for standardizing UAS 
survey protocols (Cunliffe et al., 2022), an explicit approach to scale decisions would further 
benefit UAS applications and knowledge exchange. Identifying an optimal grain and spatial 
extent for a specific monitoring objective currently represents a knowledge gap, with potential 
resource and time costs for researchers and managers (Mahood, Joseph, et al., 2021). Here, we 
demonstrate a multi-scale approach to UAS data and identify optimal scales for wildfire and 
effects and recovery process with implications for research and management of the Great Basin 
ecosystems.  
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Materials and Methods 
Overview 

We combined a comprehensive dataset of UAS and field data in South-Western Idaho, 
USA to capture a range of environmental and post-wildfire stages using the space-for-time since 
wildfire approach. We surveyed 10 sites with a consumer-grade UAS along the edge of a 
wildfire line followed by extensive, randomized ground surveys of shrub abundance totaling > 
22,000 shrub locations (Figures 1 and 2). We mapped all shrubs within 729 plots of 25 m2 using 
a high-precision GPS system, and stratified the individuals into juvenile (< 25 cm) and adult (> 
25 cm) categories. Next, we quantified the structural heterogeneity at discrete spatial scales using 
a UAS-derived canopy height model and a discrete wavelet transform (DWT). To identify the 
optimal scales of heterogeneity for the stand- and individual-plant levels, we quantified the 
heterogeneity-wildfire and recruit abundance-heterogeneity relationships using a combination of 
generalized linear models (GLMs). We used k-fold cross-validation to quantify how well 
structural heterogeneity can predict juvenile abundance. Lastly, we explored the interactive 
effect of structural heterogeneity and adult density on the abundance of juvenile shrubs using a 
GLM with a log-link and negative binomial error distribution.  

Field surveys 
Field sites were distributed across south-western Idaho, USA to include a range of 

elevation and time-since wildfire site conditions. This space-for-time substitution approach in 
site selection allowed us to increase the spatiotemporal representation of disturbance effects and 
recovery stages in our dataset (Adler et al., 2020). Each site follows a sampling design where 
approximately half of the rectangular footprint surveyed with a UAS was intact shrubland, while 
the other half was previously burnt (Figure 2). This design allowed us to measure the state of 
reference vegetation for each post-wildfire landscape. Because our sites spanned a wide range of 
environmental conditions, shrublands had different species composition, including the 
predominant species of canopy formation. In proportional representation, approximately 75% of 
the data were represented by Artemisia tridentata, 17% of Artemisia arbuscula, 1-2% 
Chrysothamnus viscidiflorus, Ericameria nauseosa, Purshia tridentata, and < 1% of Eriogonum 
sphaerocephalum, Ribes aureum and Rosa woodsii. Within each 25 m2 plot we exhaustively 
mapped all shrubs, placing the GPS unit in the middle of the shrub crown. We used a survey-
grade RTK GPS unit (Topcon HiPer V, Topcon Positioning Systems Inc., Livermore, CA, USA) 
that allowed us to collect geospatial data with ~ 2 cm accuracy (Rayburn et al., 2011). Each plant 
was assigned a binary index to indicate whether the plant was above or below 25 cm. We 
considered the plants below the 25 cm threshold as recent recruits, based on the relationship 
between small size and lower probabilities of survival and fecundity in the dominant shrub 
Artemisia tridentatas (Shriver et al., 2019). Once the geospatial field data was collected, a post-
processing correction was necessary to reduce the positioning errors. We used Online 
Positioning User Service (OPUS) and a proprietary software MagnetTools (Topcon Positioning 
Systems Inc., Livermore, CA, USA) to correct the data points.  

Data processing 
 We used UAS products surveyed at our sites to obtain spatially explicit structural metrics 
of vegetation communities. Each UAS product included a raster and a point cloud representing a 
digital surface model (DSM) of the site, that follows a vegetation and topography footprint of the 
landscape. We restricted our focus to the structural characteristics composed only by the 
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vegetation component, and therefore removed the topographic variation from the DSM by 
subtracting the digital terrain model (DTM). We generated the DTM by applying existing 
software tools and fine-tuned filtering of the DSM, aiming to remove large and small vegetation 
from the dense point cloud, using open-source tools CloudCompare and ‘lidR’ package 
(https://github.com/andriizayac/uas_data_preprocess). We then used the resulting canopy height 
model (CHM) as an input to quantify scale-dependent structural variability.  

Structural heterogeneity 
 To quantify structural heterogeneity from the CHM and decompose it into scales of 
variability, we used a mathematical technique: Discrete Wavelet Transform (DWT). Wavelet 
transform is an operation that decomposes a signal (e.g., canopy height) into a series of scale 
resolutions from low- and high-frequency changes. For example, low- and high-frequency 
changes may correspond to variability created by large and small plants or branches, 
respectively. In ecology, wavelet transformation is used to investigate the scales of variability in 
spatial or temporal processes, e.g., forest spatial structure, temporal and spatial synchrony in 
communities (Bradshaw & Spies, 1992; Keitt & Fischer, 2006; Walter et al., 2017). We used 
wavelet transform from the ‘wavethresh’ package to decompose spatial variability in the CHM 
into discrete scales of variation, from fine to coarse, and tested the relationship of each scale to 
the effect of wildfire and shrub recruit abundance. For each 25 m2 plot we quantified a total 
amount of variability at each scale by summing the squared difference coefficients of the wavelet 
transform. Difference coefficients characterize changes in the canopy structure by comparing the 
values at neighboring pixels, where a high wavelet difference coefficient at a coarser resolution 
would correspond to very different neighborhood pixels at a finer resolution, and the finest 
resolution corresponds to the canopy height in the original raster.  
Data analysis 
 Wavelet transformation of the CHM resulted in characteristic variability of the canopy 
across nine scales. Therefore, we ran nine linear mixed models where we used heterogeneity as 
response and wildfire as a predictor, while controlling for site differences via the random effect. 
The wildfire effect was quantified using a binary variable indicating whether the plot was within 
the burnt or the reference area. We used ‘brms’ package and ran the linear models in the 
Bayesian framework with default priors (Bürkner, 2017). To evaluate the predictive potential of 
a structural heterogeneity we iteratively fit nine models with recruit abundance within each plot 
as a response and a single scale of heterogeneity as a predictor. Each time, we replaced the 
predictor, i.e., scale of heterogeneity, with the next, coarser scale and evaluated the predictive 
power by calculating Bayesian version of R2 and mean absolute error (MAE) as metrics of 
predictive power. We calculated the MAE as 𝑒	 = 	 %

&
∑ |𝑦* − 𝑦,-|&
*.% , where N is the number of 

field plots, 𝑦 is the observed data, and 𝑦/ is the predicted count of shrub recruits. For all data 
manipulation and analysis we used R software v4.2.2 (R Core Team, 2021), including ‘sf’, 
‘terra’, ‘ggplot2’ packages (Hijmans et al., 2022; Pebesma, 2018; Wickham, 2011; Wickham et 
al., 2019). 
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Figure 1: The distribution of the study sites in SW Idaho, USA. Each site includes UAS data 
combined with an extensive field survey documenting the location of individual shrubs. The UAS 
sites span a range of elevation conditions and time-since-wildfire.  
 

 
Figure 2: Sampling design on the example of Cold wildfire, Idaho, USA. The figure shows a 
combination of the products from remotely sensed (canopy height) and field-based data. Field 
data includes randomly distributed field plots (25 m2), circular boundaries with the centroid 
indicated by black points, exhaustively surveyed to map individual shrubs. 
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Results and Discussion 
The relation of structural heterogeneity to the two ecological processes, disturbance and 

recovery, revealed markedly different scale dependence (Figure 3). Namely, structural 
heterogeneity was most sensitive to wildfire effects at intermediate scales (2.34 m, Figure 4), 
while the recovery processes measured as the abundance of shrub recruits was most associated 
with a finer scale (0.29 m, Figure 4). Despite the differences among sites, this trend was 
consistent across the range of elevation (867 – 1514 m) and time-since-fire (7 – 26 years) 
gradients. Disturbance and recovery also showed a varying degree of scale dependence. Wildfire 
effects had a negative, unimodal pattern of scale dependence, with a single optimal scale most 
sensitive to structural changes. In contrast, scales of heterogeneity showed a combination of 
positive and negative effects on recruit abundance (Figure 2). 

 
Figure 3: Wildfire effects on the structural heterogeneity of shrublands of the Great Basin, USA. 
Each plate shows a single site surveyed across the range of elevation and time-since-fire, where 
the disturbed and undisturbed field plots are compared as an average change in structural 
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heterogeneity across scales. The difference between the burnt and reference structural metrics is 
shown on the y-axis. The units correspond to raw wavelet difference coefficients summarized at 
25m2 plots and divided by the total amount of heterogeneity. The points and the error bars 
indicate the means and 2 SD of structural variation, respectively. 

 
 Shrubland structure at very small and large scales was less sensitive to the effects of a 
wildfire. The unimodal pattern of scale dependence points to the generality of the structure-
function relationship in our study system (Maestre et al., 2016). Wildfires in the Great Basin may 
equally remove large and small shrubs from the landscape (Mahood, Koontz, et al., 2021; Miller 
et al., 2013; Requena-Mullor et al., 2019), but our results emphasize that the structure created 
large plants can be a sensitive indicator of the wildfire effects. The sensitivity of intermediate 
scales highlights structural heterogeneity as a metric of stand-level wildfire effects that do not 
require fine-scale structural accuracy. The result is relevant for assessing wildfire severity and 
monitoring the Great Basin shrublands, suggesting that excessively fine-scale resolutions of 
remotely sensed data will have diminishing returns. This finding contrasts with biomass and 
cover estimates from canopy structure that typically require very high resolution UAS data 
(Cunliffe et al., 2022; Gillan et al., 2020). Focusing on coarser spatial resolution (e.g., 2.34 m) 
remote sensing products could be an adequate approach to monitor low-structure arid vegetation 
at larger spatial extents. In particular, applications of UAS in natural resource management face 
an inherent trade-off between the grain of the structural data and the spatial extent of the survey 
(Koontz et al., 2022). Matching the monitoring goal with the scale of observation will optimize 
resource investment and contribute to the standardization of UAS in ecological applications 
(Cunliffe et al., 2022). Overall, we show that a single, optimal scale of observation could be 
operationalized for ecosystem monitoring as an efficient and sensitive metric of ecosystem states 
across a range of environments and ecosystem states (Spake et al., 2022). 

 
Figure 4: The effect size of wildfires on Great Basin shrublands measured by changes in canopy 
structure across the range of scale resolutions. Distance from zero indicates the deviation of a 
disturbed shrubland in reference to the adjacent intact vegetation surveyed along the wildfire 
boundary with unoccupied aerial systems (UAS). The effect size shows the decline in canopy 
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structural heterogeneity at discrete scales (x-axis). The points indicate the means and the error 
bars correspond to 2 SD of the posterior distribution.  

 
The predictive power of structural heterogeneity for recruit abundance also depended on 

the scale of measured heterogeneity. Specifically, structure at fine scales (0.04 – 0.15 m) brings 
little predictive power for small individuals (Figure 3). A combination of structural heterogeneity 
from 9.36 - 0.29 m scales showed high predictive capacity using k-fold cross-validation: R2 = 
0.43 (95%CI: 0.39-0.48) with a mean absolute error (MAE) of 24.7 juvenile individuals. This 
pattern of predictive errors reiterates that the process is structurally most pronounced at the scale 
of 0.26 m, in contrast to the stand-level disturbance effect at a coarser resolution. This threshold 
is particularly surprising because small shrub recruits are often smaller in diameter than the size 
of a single pixel at this resolution. Therefore, our results contribute to the growing evidence of 
ecosystem structure being a powerful predictor of ecosystem function (LaRue et al., 2019). 
Adapting UAS surveys for ecological applications could thus incorporate spatial scales explicitly 
into the project objectives (Lines et al., 2022; Spiers et al., 2021). 

 

 
Figure 5: The predictive power of canopy structural heterogeneity to forecast juvenile shrub 
abundance. The predictor variables included site elevation and canopy structural heterogeneity 
using 10-fold cross validation with individual sites left out for each fold. Scale resolutions 
correspond to individual scales of structural variation with the rest of the scales removed from 
the predictor list. Finer dotted lines indicate 95% credibility interval of R2 propagated through 
parameter uncertainty to juvenile count predictions.  
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Conclusions and Implications for Management/Policy and Future Research 
Our study demonstrates the importance of scale in monitoring Great Basin shrublands 

with UAS. We found that structural heterogeneity is a sensitive metric for disturbance and 
recovery processes but this sensitivity is scale dependent (Spake et al., 2022). The sensitivity of 
structure to wildfire effects at intermediate scales (~2 m) suggests that the extent of surveyed 
Great Basin shrublands with UAS can be dramatically increased compared to high-resolution 
data. While monitoring vegetation structure at the scale that is predictive of recruit abundance is 
higher (~ 0.30 m), compared to ultra-high resolution surveys the extent of UAS surveys could be 
considerably expanded as well. Optimal scales of structural heterogeneity show promise as a 
predictive tool to assess the recovery trajectory of a degraded ecosystem. In agreement with the 
recent findings of a strong structure-function relationship (LaRue et al., 2019), we found that the 
structural composition of a Great Basin shrublands directly ties disturbance and recovery 
processes. We conclude that scale decomposition of vegetation structure will be fruitful for 
future studies aiming to link ecosystem structure and functional metrics like resistance and 
recovery, with direct utility for natural resource management. 
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Appendix A: Contact Information for Key Project Personnel 
Andrii Zaiats 

Department of Biological Sciences 
Boise State University 

Email: andriizaiats@u.boisestate.edu 
Phone: (208) 426-3262 

 
Dr. Trevor Caughlin 

Department of Biological Sciences 
Boise State University 

Email: trevorcaughlin@boisestate.edu  
Phone: (208) 426-3262 

 

Appendix B: List of Completed/Planned Scientific/Technical 
Publications/Science Deliveries 

1. PhD Dissertation chapter, expected Spring 2022 
2. Refereed publication: “Scale-dependent structural heterogeneity – an insight into wildfire 
effects and recovery in arid shrublands”. In prep. Target journal: PNAS 

3. Conference presentations: 
Zaiats, A., Cattau, M.E., Delparte, D., Caughlin, T.T. “Scale-dependent shifts in 
structural characteristics of sagebrush stands before and after wildfire events”. Idaho NSF 
EPSCoR Annual Meeting, 26-28 October, Boise, ID. Invited Poster Presentation.  
Zaiats, A., Cattau, M.E., Delparte, D., Caughlin, T.T. “Scale-dependence of structure-
function relationships: optimal scales of shrubland structural heterogeneity measured 
using unoccupied aerial systems (UAS)”. Planned presentation at IALE – North America 
2023 Annual meeting, March 19-23, Riverside, California.  
Zaiats, A. “Interactive effects of structural heterogeneity and density on shrub 
recruitment in post-wildfire landscapes”. Planned presentation at SER Great Basin 2023 
Annual Meeting, March 21-23. 

4. Protocols: 
Marie, V., Zaiats, A., Caughlin, T.T. “Open Drone Map: Structure-from-Motion 
Worklow”. A hands-on protocol to process UAS data using open-source software.  
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Appendix C: Metadata 
See final project page in JFSP database for project metadata. Data products used in the analysis 
will be archived in the Northwest Knowledge Network (NKN) upon publication of results in peer 
reviewed journals.  
 
The unoccupied aerial systems (UAS) data will be permanently archived on the NKN public 
repository, including the processed products, as well as raw imagery and ground control points 
that will allow reproducibility or reprocessing using any structure-from-motion software.  


