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Abstract 
 
The principal aim of this project was to project changes in fuels, fire dynamics, and associated 
responses of vegetation and breeding birds that might inform selection and prioritization of 
management actions in the Great Basin. Our original six objectives were to model percent cover 
of cheatgrass (Bromus tectorum) across the Great Basin and project changes in cheatgrass cover 
as a function of precipitation; increase the accuracy of models of percent cover of sagebrush and 
herbaceous vegetation; use field data to train and validate models of vegetation cover and to 
relate cheatgrass cover and biomass; model probability of fire across the Great Basin as a 
function of percent cover of cheatgrass and precipitation; project changes in habitat quality and 
occupancy for sensitive-status birds given changes in vegetation; and test whether ecological 
thresholds (values of an environmental pressure at which ecosystem state changes abruptly and 
nonlinearly) occur in projected future vegetation cover, habitat quality, and occupancy.  
 
We established study sites in four biogeographically distinct regions of the Great Basin. We 
collected field data on cheatgrass cover and biomass and other aspects of vegetation composition 
and structure, captured ultra-high resolution aerial images, and collected point-count data on 
breeding birds and their habitat. 
 
The current body of public data does not allow reliable estimation of percent cover of cheatgrass 
as a continuous variable. Across the Great Basin, categorical percent cover of cheatgrass 
increased as primary productivity early in the growing season, which was correlated positively 
with precipitation, increased. Both the presence and proportion of years of grazing increased the 
probability of presence and prevalence of cheatgrass. Our results do not support the use of 
livestock grazing to suppress cheatgrass, and especially not in unburned areas.  
 
Remote estimation of cheatgrass cover on the basis of visible spectral bands remains quite 
difficult unless the phenological stage of cheatgrass contrasts sharply with that of surrounding 
vegetation and cheatgrass cover exceeds about 20%. Ilastic, software with a random forest 
algorithm that uses spectral and texture features, proved to be a generally accurate classifier of 
land cover within sagebrush shrubsteppe on the basis of ultra-high resolution images. 
 
Relations between percent cover and biomass (which is strongly related to fire likelihood) of 
cheatgrass were moderate to strong. We are clarifying whether the strength of the relation varies 
among regions or wet and dry years, or on the basis of sampling methods. From 1992–2012, 
about 52% of fires in the Intermountain West were human-ignited (75% in areas with 
cheatgrass), and that human ignitions more than doubled the length of fire season. The frequency 
of fires increased substantially in areas in which observed cheatgrass cover was > 1%. 
 
Environmental associations with the abundances of individual species of breeding birds often 
were similar among regions, but apparent random or directional movement of individual birds 
during the breeding season complicates model fit. It appears that some species of birds are 
moving directionally along elevational gradients both within seasons and among years. The 
abundances of many riparian-obligate and facultative riparian species appeared to decline 
sharply beyond a given threshold of within-canyon riparian area. 
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Objectives 
 
Our proposal responded to task statement 15-1-03, Implications of changing fuels and fire 
regimes in selected regions. The Great Basin was among the five selected regions. The intent of 
the task statement was to estimate likely changes and trends in fuels and fire regimes to 
approximately 2035, and to examine the potential implications of these changes and trends for 
management programs. We aimed to project future changes in fuels, fire dynamics, and 
associated ecological responses that might inform selection and prioritization of management 
actions in the Great Basin and shape structured adaptive management throughout the region. 
 
To address the task statement, we originally established six study objectives. Our first objective 
was to model percent cover of cheatgrass across the Great Basin and project future changes in 
cheatgrass cover as a function of precipitation. Second, we proposed to use random forest models 
to increase the accuracy of models of percent cover of sagebrush and herbaceous vegetation. 
Third, we planned to use field data to train and validate models of vegetation cover and to relate 
cheatgrass cover and biomass. Our fourth objective was to model probability of fire across the 
Great Basin as a function of percent cover of cheatgrass and precipitation. Fifth, we planned to 
project changes in habitat quality and occupancy for Greater Sage-Grouse and other sensitive-
status birds given changes in vegetation. Sixth, we proposed to test whether ecological thresholds 
(values of a natural or anthropogenic pressure at which abrupt, nonlinear changes in ecosystem 
state occur) occur in projected future vegetation cover, habitat quality, and occupancy.  
 
Our efforts to meet the first objective yielded two peer-reviewed publications (Bradley et al. 
2018, Williamson et al. 2020). As explained in Bradley et al. (2018), we found that a robust 
projection of percent cover of cheatgrass across the Great Basin was not possible. However, we 
developed a model that projected whether cheatgrass cover was ≥ 15% or < 15% with moderate 
accuracy. Because we were unable to project percent cover of cheatgrass as a continuous 
variable, we were unable to project future changes in cheatgrass cover as a function of 
precipitation. Nevertheless, both publications clarified associations between direct and indirect 
measures of precipitation and presence, relative cover, and prevalence of cheatgrass. 
 
Work toward meeting our second objective yielded a manuscript in revision (Horning et al.). It 
proved more challenging than we anticipated to transition from field measurements to mapping 
of land cover on the basis of moderate-resolution images from satellite-mounted sensors. We 
evaluated the accuracy of classifiers based not only on random forests but classifiers based on 
neural networks. Across five land-cover classes, and depending on the height above ground at 
which images were taken, three classifiers generally yielded overall accuracies > 0.8. 
 
We found consistent relations between percent cover and biomass of cheatgrass, but it was 
unclear whether relations are uniform across the Great Basin and among sampling methods. 
Correlations between appear to be stronger when fine-resolution measures are aggregated within 
a moderate spatial extent (e.g., many 1m2 quadrats aggregated along a 50-m transect) than when 
the same measures are not aggregated. We recently collected additional data to obtain greater 
clarity on sources of variation in the strength of the relation between percent cover and biomass. 
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Although it was not possible to model continuous percent cover of cheatgrass as a continuous 
variable, Bradley et al. (2018) and Williamson et al. (2020) yielded novel inferences on relations 
between fire, precipitation, and cheatgrass presence, prevalence, and cover. Balch et al. (2017) 
highlighted the increasing role of humans in igniting wildfires and extending the duration of the 
fire season across the conterminous United States. 
 
We modeled the abundance of individual species of breeding birds in four regions of the Great 
Basin on the basis of vegetation and topography. The Joint Fire Science Program (JFSP) 
approved collection of data in the central Great Basin, which we did not originally propose. The 
volume of research focused on Greater Sage-Grouse is quite high, and volume of research 
focused on other species of breeding birds, especially those that may be affected by management 
actions taken in the name of conserving Greater Sage-Grouse (e.g., removal of native conifers), 
is relatively low. Accordingly, we concentrated on the latter species rather than Greater Sage-
Grouse. Our analyses identified associations between abundance, vegetation attributes, and other 
environmental variables for a subset of species for which data were sufficient for modeling. Our 
work suggests strongly that within-season movements of birds, which violate assumptions of 
detection-weighted abundance models, may inhibit estimation of associations for many species, 
especially when relatively few years of data are available.  
 
We found some evidence of thresholds in the abundance at which cheatgrass increases the 
likelihood of fire and in levels of riparian fragmentation that are associated with changes in the 
abundance of breeding birds.  
 
Working hypotheses 
 
Four working hypotheses served as a foundation for our work. We hypothesized that values of 
vegetation indexes (e.g., the normalized difference vegetation index [NDVI]) over time are 
positively correlated with percent cover of cheatgrass, and that growing season precipitation and 
NDVI in areas dominated by cheatgrass are strongly correlated. Additionally, we hypothesized 
that increases in percent cover of cheatgrass following wet growing seasons are positively related 
to the number and spatial extent of fires. We hypothesized that explanatory models of species 
occupancy as a function of environmental covariates would support projections to future time 
periods. Furthermore, we hypothesized that the state of at least some of our focal species of 
changes abruptly in response to abrupt or gradual changes in environmental conditions.  
 
 

Background 
 
Increases in the distribution and abundance of non-native grasses have modified fire dynamics 
worldwide, often leading to loss of human life and property and to substantial financial costs 
(D’Antonio and Vitousek 1992, Brooks et al. 2004). As the geographic distribution and 
abundance of cheatgrass (Bromus tectorum), an annual grass native to Eurasia, increases across 
the Great Basin, it drives a cycle of increases in the frequency and extent of fire and further 
expansion of cheatgrass (Bradley et al. 2018). The area burned has increased by as much as 
200% since 1980, accompanied by over US$1 billion in fire-suppression costs (Balch et al. 2013, 
NCEI 2018). Cheatgrass-induced changes in fire patterns are associated with loss of sagebrush 
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(Artemisia spp.), perennial grasses, and forbs that provide habitat for hundreds of plant and 
animal species. These species include Greater Sage-Grouse (Centrocercus urophasianus), which 
repeatedly has been considered for listing under the U.S. Endangered Species Act (Freeman et al. 
2014, USFWS 2015, Germino et al. 2016), and many other sensitive-status animals and plants. 
 
There also is strong evidence that regional warming and drying are linked to increased fire 
frequency and size and longer fire seasons in the western United States (Westerling et al. 2006, 
2016; Jolly et al. 2015, Abatzoglou and Williams 2016, Williams and Abatzoglou 2016). It has 
been difficult to determine whether individual fires were ignited by lightning or human activity 
(Hawbaker et al. 2013). Humans change the distribution and density of ignitions, shift the season 
in which fires burn, and alter fuels (Bowman et al. 2009, 2011). Human ignitions generally are 
most prevalent at intermediate levels of development (Syphard et al. 2007, Bistinas et al. 2013, 
Balch et al. 2016). Human activity ignites fires when fuels are sufficiently dry enough to ignite 
and carry fire, but when lightning is rare.  
 
Predictors of the extent and dominance of cheatgrass 
 
Although the effects of cheatgrass on fire dynamics are well known, whether the distribution, 
abundance, and biomass of cheatgrass have predictable responses to environmental variables at 
large spatial extents is less clear. Several studies assessed environmental correlates of cheatgrass 
cover, density, or abundance in the Intermountain West (e.g., Gelbard and Belnap 2003, Bradley 
and Mustard 2006, Compagnoni and Adler 2014, Pilliod et al. 2017). These correlates vary 
across the range of cheatgrass (e.g., Bradley et al. 2016, Brooks et al. 2016), in relation to fire, 
and potentially over time. 
 
Establishment of cheatgrass generally is associated with relatively high levels of precipitation 
during autumn or spring, which facilitate the species’ germination and growth (Bradley et al. 
2016). Percent cover and biomass of cheatgrass also can be highly responsive to heavy winter 
and spring precipitation (Knapp 1998). For example, cheatgrass biomass can increase tenfold 
following wet winters (Garton et al. 2011), substantially increasing fine-fuel loads and the 
probability of fire (Balch et al. 2013, Pilliod et al. 2017). Biomass of cheatgrass may remain high 
during the year following a wet winter, especially when competition from perennial grasses is 
low (Bradley et al. 2016). There is some evidence that the abundance of cheatgrass is less likely 
to increase in areas with relatively high summer precipitation and cool annual temperatures 
(Taylor et al. 2014, Brummer et al. 2016).  
 
Other potential predictors of cheatgrass distribution and abundance include livestock grazing, 
abundance of native perennial grasses, elevation, and solar exposure. The percent cover, density, 
or abundance of cheatgrass can increase rapidly in areas that recently have burned or been 
disturbed by land uses such as road construction, maintenance, or use; agricultural activities; or 
grazing by domestic livestock (Mack 1981, Bradley and Mustard 2006, Banks and Baker 2011, 
Reisner et al. 2013, Pyke et al. 2016, Svejcar et al. 2017). Little research has quantified the links 
between cheatgrass and livestock grazing due to the difficulty of obtaining reliable, quantitative 
data regarding this land use. Yet management of livestock grazing on the public lands that cover 
about 75% of the Great Basin may have a substantial effect on the expansion and ecological 
effects of cheatgrass. Livestock trample soil crusts, which can increase potential colonization by 
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cheatgrass, and disperse cheatgrass seeds (Reisner et al. 2013). The abundance and percent cover 
of native perennial grasses that compete with cheatgrass independent of land use also are directly 
and negatively associated with the intensity of livestock grazing (Adler et al. 2005, Reisner et al. 
2013). These grasses did not coevolve with high abundances of large ungulates (Mack and 
Thompson 1982). In many cases, the US Forest Service (USFS) and US Bureau of Land 
Management (BLM) defer continuation of livestock grazing on active allotments for two years 
following fire (BLM 2007). Although there are advocates for both shorter and longer exclusion 
periods, there are few empirical data to inform management decisions, especially in areas where 
cheatgrass has become widespread.  
 
Classification of cheatgrass and other vegetation types in sagebrush shrubsteppe 
 
Cheatgrass usually becomes productive earlier in spring than native grasses and shrubs in the 
Great Basin. As a result, it often is feasible to detect and map cheatgrass with satellite imagery 
(Peterson 2005, Bradley 2014). Models of the distribution of cheatgrass have been based on 
satellite data from Landsat, the Moderate Resolution Imaging Spectroradiometer (MODIS), and 
the Advanced Very High Resolution Radiometer (AVHRR) (Bradley and Mustard 2005, 2008; 
Peterson 2005, 2006; Clinton et al. 2010; Boyte et al. 2016, Downs et al. 2016). 
 
Low-altitude aerial imagery can be a valuable source of data when transitioning from field 
measurements to predictions that are based on coarser resolution imagery collected by satellite 
sensors (Wang et al. 2017, Leitão et al. 2018). One can acquire digital photographs with a kite or 
pole aerial photography system. One also can acquire extremely close-range imagery with hand-
held digital cameras. Although such platforms are valuable when unmanned aerial vehicle 
(UAV) flights are prohibited or for long-term monitoring, UAVs often are preferred because they 
are readily available, they can be programmed to fly precise autonomous missions, and systems 
with integrated cameras are available widely. 
 
Hundreds of peer-reviewed papers (e.g., Horning 2018, Singh & Frazier 2018, Jiménez López & 
Mulero-Pázmány 2019) and books (Calvo and Lovejoy 2018, Wich and Koh 2018) illustrate 
realized and potential applications of UAVs in resource management, often with a focus on 
spatial assessment of land cover. Much of that literature emphasizes techniques that stitch 
together hundreds of aerial photographs to create orthophotographic mosaics that are 
geometrically correct and can be used in a geographic information system (GIS). Few 
publications provide pragmatic guidance on use of methods other than visual interpretation to 
extract extremely detailed land-cover information from images acquired by UAVs. Although 
there is tremendous value in visual or manual interpretation of true-color images, automating 
some of the information-extraction steps offers potential for analyzing much larger volumes of 
data, which might encompass larger areas, longer time periods, or more-frequent sampling. 
 
Relations between cheatgrass cover and biomass 
 
Estimates of the distribution or abundance of cheatgrass may depend on the year in which 
images were taken (Bradley and Mustard 2005). Additionally, relatively few data are available to 
train and test spatial models of cheatgrass derived from satellite imagery. The small spatial 
resolutions (e.g., a few square meters) or linear transects on which surveys of cheatgrass and 
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other vegetation often are based are not necessarily comparable to the spatial resolution of 
satellite images (e.g., hundreds of square meters to hectares; Bradley 2014). Moreover, the sparse 
training and testing data rarely include information on percent cover. 
 
Increases in the accuracy of spatial models of cheatgrass presence and percent cover, especially 
at fine resolution, may increase understanding of the relations between cheatgrass and regional 
fire dynamics. Although the grass-fire cycle associated with cheatgrass long has been known 
(D’Antonio and Vitousek 1992, Brooks and Pyke 2001), its effects across the Great Basin were 
not estimated quantitatively until the past decade (Balch et al. 2013). Furthermore, the latter 
estimates were based on a remotely sensed product at 1 km resolution, with an overall accuracy 
of 61%, which was derived from annual variability observed during the 1990s (Bradley and 
Mustard 2008). Additionally, to the best of our knowledge, whether percent cover of cheatgrass 
is strongly correlated with biomass of cheatgrass (a fairly reliable measure of fine-fuel loads) is 
not well understood. A consistent relation between cover and biomass would facilitate estimates 
of fine-fuel loads, which are associated with the likelihood of intense fire.  
 
Predictors of habitat quality and occupancy of breeding birds 
 
Conservation of Greater Sage-Grouse is a major goal of fire and fuels management in the Great 
Basin, but actions intended to benefit Greater Sage-Grouse may have undesirable effects on other 
native species of breeding birds (Carlisle et al. 2018). Some of the species that we previously 
recorded in the central and western Great Basin that are considered sensitive by the 
Intermountain Region of the USDA Forest Service, on Partners in Flight’s yellow list, or are 
designated by Partners in Flight as common but in steep decline, occur exclusively in from areas 
dominated by sagebrush (e.g., Loggerhead Shrike [Lanius ludovicianus], Horned Lark 
[Eremophila alpestris]). However, we have recorded the majority of these species, including 
Greater Sage-Grouse, in multiple vegetation types, and often at soft edges between sagebrush 
and woodland. Species that typically nest in sagebrush, for example, may sing from perches in 
nearby trees to attract mates; accordingly, the presence of both sagebrush and trees may 
contribute to recruitment of these species. Replacement of sagebrush by cheatgrass, natural 
expansion of woodlands, removal of trees or brush, and both fire and post-fire restoration may 
affect habitat quality and occupancy for multiple species. 
 
Moreover, management actions conceived at the level of the Great Basin, whether aimed at 
Greater Sage-Grouse or other objectives, do not always recognize biogeographic differentiation. 
For example, Behle (1963) recognized five centers of avifaunal differentiation in the Great Basin 
(Warner, Sierra Nevada, western Great Basin, eastern Great Basin, and Inyo), which generally 
correspond to differences in climate and vegetation. Accordingly, the local habitat of a species 
that occurs across the region, and its response to environmental change, may vary. 
 
From 2001–2015, we collected data in two avifaunal centers, the eastern Great Basin (Shoshone 
Mountains and Toiyabe, Toquima, and Monitor Ranges [Lander, Eureka, and Nye Counties, 
Nevada]) and the Inyo (east slope of the Sierra Nevada and the Sweetwater and Wassuk Ranges 
[Mono County, California and Mineral, Douglas, and Lyon Counties, Nevada]). This project 
allowed us to augment the regional extent of our data by conducting research in the Owyhee 
Uplands (southern Idaho) and the East Tintic and Sheeprock Mountains (central Utah), which 
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also fall within the eastern Great Basin. We aimed to compare models of detection-weighted 
occupancy and abundance among the four widely dispersed subregions.  
 
Furthermore, we examined some of the assumptions that are inherent in methods used to draw 
inference on the status of breeding birds, and their relations to environmental variables and 
change, across not only the Great Basin but temperate ecosystems worldwide. Abundance  
models widely are used to infer relations between environmental variables and populations or 
species (Pearce and Ferrier 2001, Joseph et al. 2009, Tingley and Beissinger 2009). Abundance 
models are popular in part because detection data are easier to collect than data that require 
discriminating each individual (e.g., mark-recapture data). However, abundance models can be 
biased by imperfect detection (Royle and Nichols 2003).   
 
N-mixture models (Royle 2004) frequently are used to estimate abundance from count data. 
These models assume that if an individual is detected at a given site during any one of the 
surveys (visits) in a survey period, it is available for sampling at that site during all surveys in the 
period. Diverse violations of this assumption can induce bias in N-mixture models, and these 
biases can be difficult to detect (Dail and Madsen 2011, Duarte et al. 2018, Link et al. 2018). At 
the resolutions generally used to detect birds (circles of ~100-400 m radius), some temporary, 
random movement is expected, especially where bird territories and study plots do not fully 
overlap (Jirinec et al. 2015), but permanent, non-random movement of passerine birds also is 
possible (McClure and Hill 2012). Temporary movement refers to the exit from and re-entry into 
a site of individuals during the survey window. Permanent movement refers to within-survey 
window entry, without exit, into a site by individuals from outside of the site, or to individuals’ 
exit, without return, from the site. Permanent, non-random movements could be driven by nest 
failure, distributional shifts during the breeding season (e.g., elevational migration) (Betts et al. 
2008), differences in the attributes of nest sites among broods within a season (Gow and 
Stutchbury 2013), or other events or behaviors.  
 
Violations of the closure assumption as a result of permanent, non-random movement could bias 
estimators of abundance and associations between these response variables and covariates. To 
evaluate the extent to which seasonal availability varies and is a realistic concern for estimation 
of abundance, we also applied three-level hierarchical models to our avian detection data from 
the Great Basin. Permanent movement is a plausible explanation for such variation. Because 
studies that apply N-mixture models to repeated-sampling data are common in the literature, it is 
relevant to examine biases in these models’ estimators that are induced by assumption violations. 
 
Ecological thresholds 
 
Much research in community ecology has focused on the theory that species richness increases 
as the area of habitat increases, and decreases as habitat becomes fragmented. Fragmentation 
usually refers to separation of previously contiguous land cover or habitat by land use. Some 
land-cover types, however, including many riparian areas in the Great Basin, are naturally 
isolated and fragmented. Species that evolved in these naturally fragmented systems may have 
different responses to habitat area and fragmentation than species in systems that are fragmented 
by land-use change. In the Intermountain West, the central Great Basin has some of the region’s 
lowest levels of fragmentation from land-use change (Reeves et al. 2018). 
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Andrén (1994) suggested that fragmentation is a driver of species richness in areas where habitat 
is <30% of land cover, but Fahrig (2013) posited that habitat area explains species richness in 
nearly all systems (the “habitat amount hypothesis”). Previous analyses of the response of 
species richness to habitat area and fragmentation in naturally fragmented riparian systems in the 
Intermountain West are equivocal (Strong and Bock 1990, Pavlacky and Anderson 2007, 
Dickson et al. 2009). Any examination of the response of species richness to habitat area and 
fragmentation may be confounded by sampling effects; measures of sampling effort, such as the 
number of samples, area sampled, or sampling intensity, may explain some or all of the variance 
attributed to area and configuration. Fahrig’s habitat amount hypothesis (2013) suggested that 
variance in species richness attributed to the size or isolation of habitat patches is explained more 
accurately by sampling effects. By contrast, other workers found that sampling effects did not 
explain all variation in species richness (Cam et al. 2002, Haddad et al. 2017), and a meta-
analysis of tests of the habitat amount hypothesis found weak support that patch size and 
fragmentation affect species richness (Martin 2018). Furthermore, many measures of habitat 
fragmentation and, more generally, landscape pattern are not independent of total area of habitat 
(Wang et al. 2014). To properly assess the influence on species richness of fragmentation or any 
similar concept relating to the arrangement and shape of habitat patches, it is important to choose 
metrics that are not highly correlated with total area of habitat. 
 
Riparian areas in the Great Basin are priorities for conservation and management due to their 
limited area, relatively high species richness, and future threats (Dobkin and Wilcox 1986, 
Dobkin 1998, Fleishman et al. 2014). The Great Basin is a largely arid region dominated by xeric 
shrubland and woodland, with a small fraction of riparian cover. These riparian areas typically 
are concentrated along small streams in canyon bottoms or in patches around valley or canyon 
seeps. Riparian areas in the Great Basin are naturally isolated, but have been further fragmented 
and degraded in recent centuries by human activities, including grazing by domestic cows and 
sheep, groundwater pumping, stream diversion, and land-use change (Fleischner 1994, Knopf 
and Samson 1994, Saab et al. 1995, Warkentin and Reed 1999, Brown et al. 2005, Chambers and 
Wisdom 2009, Fleishman et al. 2014). Furthermore, the size of many riparian areas likely will 
decrease as aridity increases over the next century (Brinson et al. 2002, Poff et al. 2012, Garfin et 
al. 2013). Many native species, including 32 bird species in the central Great Basin, occur 
primarily in these riparian areas. Variables related to riparian vegetation are correlated with 
occupancy, colonization, and extinction of at least several of these riparian bird species (Dickson 
et al. 2009). Species that are associated with xeric land-cover types also forage in nearby, higher-
productivity riparian areas (Glass and Floyd 2015). Accordingly, their abundance may respond to 
the spatial arrangement of riparian patches and the total area of those patches. 
 
 

Materials and Methods 
 
Study system 
 
Although the Great Basin, the largest desert in the United States (>425,000 km2), sometimes is 
assumed to be relatively homogeneous, there is considerable regional variation in climate, 
topography, and vegetation. We established study sites in four distinct regions of the Great 
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Basin, hereafter referred to as western, eastern, northern, and central (Figure 1). These regional 
distinctions generally are consistent with zoogeographic definitions of the Great Basin. For 
example, the four regions fit well with Austin and Murphy’s (1987) zones of butterfly 
differentiation, and three of the four regions correspond with Behle’s (1963) zones of avifaunal 
differentiation. 

 
 
Percent cover of cheatgrass 
across the Great Basin 
(Objective 1)  
 
Methods are described in detail in 
Bradley et al. (2018). We compiled 
field data on percent cover of 
cheatgrass, including zero percent 
cover, from 15 sources. We 
aggregated these data to 250-m 
resolution, consistent with the 
finest resolution of data on 
phenology, measures of primary 
productivity (NDVI), and tree 
cover from MODIS. We used a 
random forest regression model, 
implemented in R, to predict 
percent cover of cheatgrass on the 
basis of 21 spatial data layers. 
Additionally, we predicted 
cheatgrass presence. We evaluated 

whether cheatgrass presence and percent cover were related to area burned from 2000–2014 and 
to the number of fires. We also tested whether ignition sources varied between fires in areas 
where cheatgrass was present or absent, and whether cheatgrass was more likely to be present in 
pixels associated with ignitions than other pixels.  
 
Predictors of the presence and prevalence of cheatgrass (Objective 1) 
 
Methods are described in detail in Williamson et al. (2020). We used two sets of data collected 
from 2001–2015 in 29 canyons in the central Great Basin (Fleishman 2015). Within those 
canyons, we sampled cheatgrass at elevations from 1886–3219 m over a range of disturbance 
histories. Complete vegetation data and metadata are in Chambers et al. (2010) and Fleishman 
(2015). Details about data collection methods also are in Urza et al. (2017). 
 
We collected data on cheatgrass and other elements of vegetation structure and composition from 
30–50 m point-intercept transects along elevational gradients of the 29 canyons. We also 
collected vegetation data in three pairs of adjacent alluvial fans on burned and unburned sites 
within one watershed in the Shoshone Mountains. We established sampling plots within burned 
and unburned plots at each elevation. We refer to each transect or plot as a sample point.  

Figure 1. Hydrographic boundary of the Great Basin and 
locations of study areas referenced in this report. 
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We assessed cheatgrass occurrence by considering sample points at which cheatgrass was not 
recorded during the study period as absences, and sample points at which cheatgrass was 
recorded present in ≥ 1 year during the study period as presences. For each sample point at which 
cheatgrass was recorded present, we estimated local prevalence of cheatgrass by summing the 
number of point intercepts (or quadrats) where cheatgrass was recorded present and the total 
number of point intercepts (or quadrats) taken at each point in a given year.  
 
We characterized the grazing and fire history of each sample point for each year. We assigned a 
binary value to indicate whether the allotment in which a given sample point was embedded was 
grazed during each year. Because data on realized (as opposed to permitted) grazing intensity are 
not maintained by the USFS, which manages virtually all of the land on which our sample points 
were located, we assumed that all active allotments were grazed. We calculated the proportion of 
years during which each sample point was grazed (years grazed / years during the study period 
prior to collection of data in a given year) to estimate levels of livestock use. We classified 
sampled points as burned if a fire occurred at the sample point from 2000–2015. For burned 
points, we calculated the number of growing seasons between the fire and a given field sample. 
 
We modeled associations between predictors and occurrence and between predictors and annual 
variation in prevalence. To evaluate associations with predictors in the presence and in the 
absence of fire, we applied these models to all of the data, to only those points that had not been 
burned, and to only those points that had been burned. We did not fit occurrence models to 
burned points because cheatgrass was recorded present in nearly all of them, preventing the 
model from discriminating between the determinants of presence and absence. We classified 
sample points as recorded present if cheatgrass was detected at any time during the study period 
and recorded absent if cheatgrass was not observed during the study period.  
 
We assessed the strength of evidence that a predictor was strongly associated with the probability 
of occurrence or with the prevalence of cheatgrass by calculating the proportion of the posterior 
probability distribution that exceeded zero for each predictor’s regression coefficient. We 
regarded predictors for which > 0.90 or < 0.10 of the posterior predictive mass for the regression 
coefficient ≥ 0, respectively, as strongly and positively or strongly and negatively associated 
with the response variable (Jeffreys 1961).  
 
Classification of cheatgrass and other vegetation types (Objective 2) 
 
Methods are described in detail in Horning et al. (in revision). We compared four machine-
learning workflows for classifying images. The workflows are based on open-source software 
and can be used to create land-cover maps from ultra-high resolution aerial imagery. We focused 
on workflows that are applicable to imagery acquired from a UAV at flying heights < 122 m 
above ground level, an upper limit set by a US federal regulation. Images acquired with point-
and-shoot or action cameras, which often are supplied with consumer UAVs at these flying 
heights, have a spatial resolution of 10 cm (deci-resolution) or finer.  
 
To obtain photographs, we used the stock red-green-blue camera on a DJI Phantom 3 Pro 
quadcopter flown over heterogenous sagebrush shrubsteppe. For our analysis we selected three, 
12 megapixel (3000 lines by 4000 columns) images, one each from a flying height of 10, 45, and 
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90 m above the elevation of the take-off point. Because the ground was relatively level, we refer 
to the flying height as above ground level (AGL), and distortion due to terrain effects was 
minimal. We acquired the three images on 14 June 2017 from the same area in central Nevada. 
 
We classified images acquired from 10 m AGL into six cover types—cheatgrass, other grasses 
and forbs, shrub, soil and rock, litter, and shadow. We did not include litter in our classification 
of images from 45 and 90 m AGL because litter objects became too small to interpret visually. 
To increase our confidence that the training data adequately represented feature variability, we 
used a kmeans unsupervised classifier to partition feature space into several clusters, and then 
selected training data from each cluster to ensure there were no major gaps in feature variability 
throughout the image. We used the validation data to assess accuracy of all workflows. 
 
Our four workflows were ilastic, software with a random forest algorithm that uses spectral and 
texture features (Sommer et al. 2011; www.ilastik.org); segmentation, a random forest algorithm 
applied to image objects that were defined with image segmentation; fully connected neural 
networks (FCNs), which process one-dimensional vectors; and convolutional neural networks 
(CNNs), which process two-dimensional image chips. Random forest (Breiman 2001) is a 
nonparametric, machine learning method with high classification accuracy for remote sensing 
applications (Rodriguez-Galiano et al. 2012). To implement FCNs and CNNs, we used the 
Neural Network Image Classifier (Nenetic) (https://github.com/persts/Nenetic), an open-source 
software package under development at the American Museum of Natural History. All of the 
software for these workflows is open source and available, at no cost, for Windows, Mac, and 
Linux operating systems.  
 
We assessed the accuracy of each workflow on the basis of 2000 pixels selected from the 
original set of labeled data for each flying height. The total number of labeled pixels from the 
images acquired at 10 m, 45 m, and 90 m flying heights was 880267, 267195, and 230670, 
respectively. In all cases the number of training points equated to < 1% of the labeled data, so 
spatial autocorrelation between training and validation data likely was minimal.  
 
We calculated overall accuracy at each flying height. We also assessed accuracy per class by 
calculating user’s and producer’s accuracy (Story and Congalton 1986) and balanced accuracy 
(Velez et al. 2007). For a given class, user’s accuracy is the proportion of pixels attributed to that 
class that were classified correctly, whereas producer’s accuracy is the proportion of reference 
pixels for the class that were classified correctly. Balanced accuracy, which compensates for 
differences in sample sizes among classes, is calculated as 0.5 * (proportion of all positives that 
are true positives + proportion of all negatives that are true negatives).  
 
Relations between cheatgrass cover and biomass (Objective 3) 
 
We measured cheatgrass cover and biomass from 2016–2019 in the north-central, western, 
central, northern, and eastern Great Basin. Within each region, precise sampling locations varied 
among years, but were intended to represent the full gradient of cheatgrass cover during each 
year. All biomass samples were placed in paper bags and delivered to the University of 
Colorado. We dried the samples at 60˚C until the mass stabilized, and then weighed the samples. 
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In the north-central Great Basin (near Battle Mountain and Winnemucca, Nevada), we collected 
samples in 20 locations in each of 2016, 2017, and 2018. The locations were dominated by 
shrubs, cheatgrass, or cheatgrass and forbs at elevations from 1300–1600 m. All locations were 
relatively flat (< 5% slope), with similar soils and a recent history of livestock grazing. In 2016, 
we established three pairs of parallel 50 m transects, with 20 m between the two transects in a 
given pair, at each location. At 5-m intervals along each transect, we recorded an ocular estimate 
of percent cover in one 0.1 m2 quadrat (11 estimates per transect). We then clipped the 
aboveground biomass of cheatgrass. In 2017 and 2018, we established a 30-m transect at each 
location and sampled biomass in five 0.1 m2 quadrats at randomly selected positions along the 
transect. In 2016, we also sampled 28, 50 x 50 m plots. We established nine 1 m2 quadrats at 
random locations within each plot and took a digital photograph of each from approximately 1.5 
m above ground level. We then clipped all cheatgrass from a 0.1 m2 area in the northwest corner. 
We aggregated biomass from the quadrats. We used Samplepoint software (Booth et al. 2006) to 
estimate percent cover within each quadrat, and averaged percent cover among the quadrats. 
 
In 2016 and 2017, we collected data in the western and northern Great Basin; in 2017, we 
collected data in the eastern Great Basin. We sampled cheatgrass in the same general areas in 
which we sampled birds. In all cases, we established a 10 x 10 m plot, set 1 m2 quadrats in the 
center and each corner, and measured maximum height (with a measuring tape) and cover 
(ocular estimate) of cheatgrass in each quadrat. In roughly half of the plots, we placed a 0.1 m2 
hoop in the middle of the upper left and lower right quadrats, and clipped all aboveground 
biomass of cheatgrass within the hoop. In the western Great Basin, we collected data from 24 
plots in 2016 and 20 plots in 2017. In the northern Great Basin, we collected data from 31 plots 
in 2016 and 20 plots in 2017. We collected data from 33 plots in the eastern Great Basin in 2017. 
 
In 2018, we collected data in the western, northern, and central Great Basin; in 2019, we 
collected data in the western and central Great Basin. We established 1 m2 plots in which we 
recorded an ocular estimate of average percent cover of cheatgrass and clipped aboveground 
biomass in a representative 0.1 m2. In all three regions, we collected data from 40 plots in 2018. 
In both the central and western Great Basin, we collected data from 50 plots in 2019.  
 
Relations between cheatgrass and fire (Objective 4) 
 
We derived our data from US Forest Service Fire Program Analysis – Fire Occurrence Database 
(Short 2014), which includes ∼1.6 million federal, state, and local records of wildfires (including 
location, discovery date, and cause) on public and private lands that were suppressed from 1992–
2012. We calculated the proportion of human-ignited versus lightning-ignited wildfires within 
equal-area 50 × 50-km grid cells across the conterminous United States.  
 
We obtained daily 1,000-h dead fuel moisture data  from 1992–2012 from surface 
meteorological data on a 4-km grid (Abatzoglou 2013). We acquired 4-km gridded monthly 
lightning-strike data from the Vaisala National Lightning Detection Network (www.ncdc. 
noaa.gov/data-access/severe-weather/lightning-products-and-services). We also obtained 
MODIS data on mean annual net primary productivity at 1 km resolution from 2002–2015 (Zhao 
et al. 2015). We assessed temporal trends in the causes of wildfires on the basis of large fires (> 
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400 ha in the western and > 200 ha in the eastern United States) that were independently verified 
by the Monitoring Trends in Burn Severity project (Eidenshink et al. 2007).   
 
Predictors of habitat quality and occupancy of breeding birds (Objective 5) 
 
We collected point-count data on breeding birds and their habitat in the eastern, northern, and 
western Great Basin during the breeding seasons (mid May through early July) of 2016 and 
2017, and in the central and western Great Basin during the breeding seasons of 2018 and 2019. 
Adding the central Great Basin to the project allowed us to capitalize on up to 15 years of 
existing data on breeding birds and vegetation. In 2016, we visited each point-count location in 
the western Great Basin four times (see below). In all other locations and years, we visited each 
point three times. We recorded all species of birds detected by sight or sound.  At all points in 
the eastern, northern, and western Great Basin, we collected data on vegetation structure and 
composition, focusing on trees and shrubs. We collected similar data in the central Great Basin 
in 2013; because values of most of our vegetation variables were unlikely to change appreciably 
over less than a decade, we did not repeat these measurements during the study period. 
 
We compared estimates of single-season occupancy models that were based on three and four 
visits. We had sufficient data to build models for 45 species; one or both models for two species 
with few detections did not converge. Occupancy estimates for 41 of the remaining 43 species 
did not differ significantly between the three-visit and four-visit models, although precision of 
estimates based on four visits was higher than that based on three visits. Given constraints on the 
duration of the breeding season and on the number of observers we could employ, we decided 
that our inferences would be stronger if we visited a greater number of locations three times 
rather than fewer locations four times. 
 
We conducted heads-up digitization of National Agriculture Imagery Program images of our 
western Great Basin and long-term central Great Basin study areas to quantify the extent and 
configuration of hard and soft edges among major land-cover or vegetation types (shrubs, 
conifers, riparian woody vegetation, riparian meadows, and aspen).  
 
In 2018, we implemented a new method for collection of bird data in which we broke our 8-
minute sample period into four consecutive 2-min periods (removal intervals). Individual birds 
only were recorded during the first interval in which they were detected. This allowed us to 
estimate whether apparent absence of a species at a given location during a given survey 
reflected failure to detect individuals that were present or true absence (Chandler et al. 2011), 
likely resulting from movement of birds between successive surveys.  
 
Relations between abundance and environmental variables. We used Bayesian methods to fit 
single-species, N-mixture models to multiple years of abundance data from the western (2012–
2019), central (2014, 2015, 2018, 2019), eastern (2016–2017), and northern (2016–2017) Great 
Basin. Computational requirements prevented us from including all years of central Great Basin 
data in the models. We calculated annual abundance as the maximum number of detections on 
any visit within the season. We removed the data from the second visit to each point from the 
2016 western Great Basin data (in 2016, we visited each point four times). 
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In the majority of cases, we modeled the abundance of species for which the number of 
detections in two or more years exceeded 50. We modeled the abundance of each species as a 
function of year, elevation, and other environmental covariates that we selected on the basis of 
the species’ ecology (Appendix C). We included canyon or area and point as random effects in 
all models, and included observer as a random effect in models for the western and central Great 
Basin. We removed covariates with variance inflation factors > 4. If the correlation between two 
covariates was > 0.75, we removed the covariate with the higher variance inflation factor. 
 
We used latent indicator variables to select models and covariates (Kery and Royle 2016). 
Indicator variables typically are used to track the posterior probability of the inclusion of a given 
predictor in good models. The indicators for predictors that strongly are associated with the 
response variable often will be included, whereas those for predictors that are not associated with 
the response variable rarely will be included. 
 
We first ran 100,000 iterations of each single-species model with all covariates and indicator 
variables included. We implemented models in BUGS (Bayesian Inference Using Gibbs 
Sampling) with JAGS (Just Another Gibbs Sampler) and the R package jagsUI, and ran models 
in R (version 3.6.1). We assessed whether models converged, and used Bayesian p-values to 
evaluate goodness of fit. We examined the mean of the posterior probability of each indicator 
variable and retained covariates for which the mean was > 0.9, indicating that the variable was 
included in > 90% of models. After removing all other covariates, we ran another 200,000 
iterations of each model. 
 
Outputs included the mean and standard deviation of the coefficient of the covariate, an 
indication of whether the covariate overlapped zero, and Bayesian p-values for the detection and 
abundance submodels. Means of the covariates are comparable within models but not among 
species. Covariates that did not overlap zero are considered highly significant, and the direction 
of the association with abundance is indicated by the sign of the coefficient. A Bayesian p-value 
~0.5 is considered ideal, and values 0.1–0.9 are considered acceptable. It is not advisable to draw 
inference about strengths of association with covariates for which posterior probabilities are 
extremely large and overlap zero, although these covariates can improve model fit.  
 
Availability and detection. Methods for evaluating the extent to which closure-assumption 
violations induce biases in modeled estimators are described in detail in Fogarty and Fleishman 
(in review) We based simulation models on count data and interpreted the response variable as 
abundance. We built a simulator in R that allows customization of values. These values include 
permanent, non-random movement terms that reflect violations of the closure assumption, and 
values that usually are estimated by abundance models (e.g., abundance, detection probability, 
and effects of environmental covariates). All simulations assumed that individuals entered from 
or exited to sites not included in the simulation, and that counts at sites were not spatially 
autocorrelated. We estimated mean abundance and the relation between abundance and an 
environmental covariate. 
 
For each species and region, we used the function gmultimix in the R package Unmarked to fit 
three-level hierarchical models to our 2018 detection data from the western and central Great 
Basin. We selected all species that were well-distributed at study sites and for which we had ≥ 45 
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records (28 species in the western and 27 species in the central Great Basin) as sufficient for 
analysis. We estimated three processes: abundance, availability, and detection. We interpreted 
detection as the probability of detecting an individual that was present and available during a 
given visit. We interpreted availability as the probability that an individual that occupied a given 
site at some point during the season was detectable, on the basis of both presence and behavior, 
during a given visit, and abundance as the total number of individuals that occupied a site for the 
full duration of the breeding season in which we conducted surveys. 
 
Ecological thresholds (Objective 6) 
 
Our analyses included point-count data collected in the central Great Basin from 2001–2015 and 
in 2018. Steep, high canyon walls covered by relatively xeric land-cover types tend to isolate the 
riparian areas at the bottom of individual canyons from those in neighboring canyons. Our point-
count data include bird detections from 320 points in 27 canyons in the four mountain ranges.  
 
We detected a total of 126 species. Because our survey effort included 16 years and a high 
density of points, we believe that few breeding species were undetected, and therefore did not 
apply data augmentation or other forms of rarefaction to these data. We fit abundance models to 
all species that we detected at least 400 times across all years and in at least 20% of our sites (32 
species). We characterized each species as riparian or non-riparian (i.e., generally breed in 
coniferous woodland or sagebrush shrubsteppe).  
 
We derived riparian area and fragmentation at the canyon level from National Agricultural 
Imagery Program (NAIP) images. To calculate riparian area, we delineated a buffer (500 meters 
from the canyon bottom) that was sufficiently large to encompass all riparian vegetation in most 
canyons and to extend beyond the expected territorial boundaries of riparian bird species. We 
mapped riparian land cover within the buffer for all study canyons, and classified riparian as wet 
meadows (little to no perennial woody vegetation; dominated by grasses, sedges, and forbs) or 
woody riparian (extensive cover of perennial woody vegetation, primarily Betula occidentalis, 
Populus spp., Prunus virginiana, Salix spp., or Rosa woodsii) in QGIS. We were not confident in 
our ability to visually discern between structural classes (e.g., trees versus shrubs) or individual 
woody species in the NAIP images, and therefore did not sub-classify the cover types. 
 
We selected the Normalized Landscape Shape Index (nLSI) (McGarigal et al. 2012) as our 
measure of fragmentation. This nLSI assesses the shape of all focal patches and is not highly 
correlated with total area of the focal land-cover type when they represent < 30% of a given 
study area, as was the case in our system (Wang et al. 2014). The other fragmentation metrics 
identified by Wang et al. (2014) as not highly correlated with total area of the focal land-cover 
type are less intuitive measures of variance, require a minimum number of patches, or require 
user delineation of core focal land-cover. We calculated nLSI and total riparian area for all of our 
canyons with the program FragStats (McGarigal et al. 2012). We also calculated total canyon 
length and proportion of canyon bottom. We included these covariates in models to ensure that 
inferences about riparian area and fragmentation were not conflated with canyon size. We 
defined canyon bottom as flat areas (≤ 10˚) between the inflection points of a concave canyon 
profile, derived from a 10-m digital elevation model, every 25 m along a line perpendicular to 
the canyon flow line. We calculated proportion of canyon bottom as the area of canyon bottom 
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divided by the total area within the a 500-m buffer surrounding the sampling route (the access 
road or trail near which points were established). For non-riparian species models, we also 
calculated the distance from each survey point to the nearest riparian patch in QGIS. 
 
We fit mixed-effect, Bayesian N-mixture models (Royle 2004, Kéry and Royle 2016) with R and 
JAGS to examine the abundance relations described above. In each model, we included linear 
and quadratic forms of four standardized covariates on the abundance process: riparian area, 
nLSI, proportion of canyon bottom, and canyon length. In each of the non-riparian species 
models, we also fit a covariate for distance to the nearest riparian patch. In all models, we 
included varying intercepts for each point to account for repeated surveys across years. We fit 
standardized linear and quadratic terms on the observation process for time of survey and date of 
survey, and a varying intercept for observer identity. We used weakly informative priors (normal 
distributions with a mean of 0 and variance of 1) for all non-varying parameters, and used a 
uniform distribution with a mean of 0 and variance of 10 for the variance of each varying 
intercept. We used the indicator variable method (Kuo and Mallick 1998, Kéry and Royle, 2016) 
to evaluate posterior model probabilities and perform model selection. We evaluated goodness-
of-fit by calculating Bayesian p-values for both the abundance and observation processes of the 
model. We rejected any models that had Bayesian p-values < 0.5 or > 0.95. 
 
 

Results and Discussion 
 
Percent cover of cheatgrass across the Great Basin (Objective 1) 
 
As detailed in Bradley et al. (2018), we found that early season productivity (spring–summer 
NDVI), which was correlated positively with precipitation, was associated positively with 
percent cover of cheatgrass. Elevation was associated negatively with percent cover of 
cheatgrass. We were unable to classify percent cover of cheatgrass as a continuous variable. 
However, at a threshold of 15% cover, with ≥ 15% characterized as high abundance and < 15% 
as low abundance, accuracies were 67% and 77%, respectively. The overall accuracy of the 
model is considered moderate (Landis and Koch 1977). This model estimated that cheatgrass 
cover is ≥ 15% across about 1/3 of the Great Basin (210,000 km2), especially in northern Nevada, 
Idaho, Oregon, and Washington. More than twice as much area within which abundance of 
cheatgrass was high burned from 2000–2014 than area within which abundance was low. The 
frequency of fires increased substantially in areas in which observed cheatgrass cover was > 1%. 
Furthermore, human activity was associated with 75% of ignitions in areas in which cheatgrass 
was present, as compared with 27% of fires in areas in which cheatgrass was absent. 
 
Predictors of the presence and prevalence of cheatgrass (Objective 1) 
 
Consistent with previous studies on the cheatgrass-fire cycle (Balch et al. 2013, Germino et al. 
2016, Bradley et al. 2018), we found that the probabilities of cheatgrass occurrence and 
prevalence were associated strongly with fire (Williamson et al. 2020). In burned points, 
cheatgrass prevalence increased as time since fire increased. A lag in increases in cheatgrass 
density and cover of one to three years after fire is common (Chambers et al. 2016). 
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Consistent with Reisner et al. (2013), our analyses suggest that both the presence and proportion 
of years of livestock grazing increase the probability of presence and prevalence of cheatgrass. 
This relation was particularly strong in unburned locations, which have higher resistance to 
cheatgrass than burned locations. It has been suggested that grazing can reduce fuel loads and the 
likelihood of severe fires in sagebrush ecosystems (Davies et al. 2010). However, our work 
suggested that grazing on burned sites may lead to an overall decrease in herbaceous cover or 
biomass rather than selectively suppressing cheatgrass.  
 
The response of cheatgrass to longer-term precipitation (median winter and spring precipitation 
and the median proportion of precipitation falling in winter) was inconsistent. Cheatgrass 
prevalence tended to be lower in years in which precipitation at a given point was high relative to 
that point’s long-term median, but higher when regional winter precipitation was high and 
regional spring precipitation was at or below the median for the study period. Many of our 
observations of high prevalence of cheatgrass that coincided with relatively high proportions of 
precipitation in winter were associated with water-years in which precipitation was low. 
Therefore, the amount of precipitation falling during periods favorable for cheatgrass 
establishment and growth may be more important than the total precipitation for the year 
(Bradley and Mustard 2005, Chambers et al. 2014, Jones et al. 2015).  
 
Regardless of fire history, cheatgrass was more likely to be recorded present at lower elevations. 
However, given presence, cheatgrass prevalence was greater at higher elevations and in areas 
with lower solar exposure. Higher prevalence of cheatgrass at relatively high elevations at the 
edges of unoccupied areas suggests that cheatgrass is likely to expand to higher elevations if 
thermal conditions are consistent with its requirements and if ground disturbances continue. 
 
Classification of cheatgrass and other vegetation types (Objective 2) 
 
On the basis of overall accuracy, the ilastik workflow yielded the most accurate results. 
Accuracy as measured by the per-class metrics was more equivocal. At the 10 m flying height, 
the FCN workflow most accurately classified the shrub class, but the ilastic workflow generally 
was the most accurate classifier. At the 45 m flying height, ilastik most accurately classified all 
but the shrub class. At the 90 m flying height, the CNN workflow most accurately classified 
grasses and forbs, shrubs, and cheatgrass. 
 
The difference between the segmentation output and the outputs of the other workflows 
increased as the flying height increased; as height increased, many smaller land-cover patches 
appeared to merge with surrounding cover types. All of the workflows have the potential to 
accurately classify cheatgrass when it is spectrally distinct from the surrounding vegetation. In 
the set of photographs we used, cheatgrass was redder than the surrounding vegetation. 
Classification becomes more difficult when the density of the cheatgrass within a patch is quite 
low or when it is shaded. 
 
A goal of automated, ultra-high resolution mapping in the visible spectrum is to match or exceed 
the accuracy with which a trained human can identify and label land-cover objects, and to do so 
faster and more objectively. Our research indicates that automated classification of aerial 
photographs acquired from low flying heights with consumer UAVs and cameras remains 
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difficult. Although much progress has been made in leveraging deep-learning algorithms to 
locate and identify or label features in an image, ultra-high resolution image classification is not 
yet widely accessible and applicable to classification of cheatgrass, shrubs, other grasses, and 
forbs in sagebrush shrubsteppe.  
 
Few existing methods for assessing the accuracy of coarse-resolution land-cover classifications 
(Congalton and Green 2008) are applicable to ultra-high resolution imagery (Persello and 
Bruzzone 2010). Other methods for selection of validation data better represent objects, but often 
are more subjective, especially in landscapes with cover-class gradients. In undeveloped areas, 
clear boundaries between cover types are uncommon, and it is much more difficult to define 
object boundaries when the transition between objects is a gradient rather than a sharp edge. 
 
The gradients between some cover types become more gradual (less stark) as flying height 
increases, making it more difficult to segment individual cover types. Cheatgrass can occur in 
relatively dense monocultures, but also co-occurs with other grasses and forbs. The latter can 
make it quite difficult to classify cheatgrass accurately, even with visual interpretation.  
 
Relations between cheatgrass cover and biomass (Objective 3) 
 
We found fairly strong correlations between biomass and percent cover of cheatgrass at different 
spatial resolutions and in different years (r2 0.67–0.86) in the north-central Great Basin. A linear 
model with no interactions that included all data from 2016–2018 yielded an r2 of 0.82. 
 
Relations between percent cover and biomass in the western Great Basin from 2016–2018, and 
in the northern Great Basin in 2016 and 2017, were weaker than those in the north-central Great 
Basin, but fairly similar (r2 0.36–0.42) (Figure 2). However, the relation in the northern Great 
Basin in 2019 was much stronger (r2 = 0.79). We are analyzing the 2019 data to clarify whether 
the difference reflects the change in sampling methods in 2018 or a difference in the relation 
between percent cover and biomass, perhaps reflecting that precipitation in the winter and spring 
preceding data collection in 2018 was much greater than during the comparable periods in 2016 
and 2017. 
 
Relations between cheatgrass and fire (Objective 4) 
 
Of the 1.5 million wildfires in the conterminous United States from 1992–2012 that were 
included in the analysis of Balch et al. (2017), 84% were ignited by humans. The percentage of 
human-ignited wildfires varied among level 1 ecoregions (Wiken et al. 2011), from 97% in 
Mediterranean California to 34% in the temperate Sierra Nevada. Across much of the ecoregion 
roughly corresponding to the Intermountain West (North American Deserts), about 52% of fires 
were human-ignited (as compared to 44% across the country), and these fires accounted for 21% 
of the area burned. Human-ignited wildfires substantially increased the length of the wildfire 
season in the United States; in the western United States, human-ignited fires were prevalent in 
late summer and autumn. Across the country, the lengths of the human and lightning-ignited 
wildfire seasons were 154 and 46 days, respectively. In the Intermountain West, the human- and 
lightning-ignited seasons were 92 and 40 days, respectively. 
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These results are 
consistent with evidence 
that worldwide, humans 
tend to change the 
seasonality of wildfires 
(Le Page et al. 2010). As 
the climate of the 
western United States has 
become warmer and 
drier, the number of fires 
generally has increased 
(Westerling et al. 2006, 
Dennison et al. 2014, 
Westerling 2016). 
Nevertheless, human 
activity has increased the 
duration of the fire 
season. Lightning-ignited 
fires usually occurred 
during summer and in 
areas with < 15% fuel 
moisture, whereas, 
nationally, about 75% of 
human-ignited fires 
occurred during other 
seasons. Moreover, 

human-ignited fires occurred in areas with higher fuel moisture and net primary productivity 
than those with lighting-ignited fires. The extent of the wildland–urban interface in the 
Intermountain West is projected to double by 2030 (Theobald and Romme 2007). The number of 
ignitions, and the risk to infrastructure, also are likely to increase considerably. 
 
Predictors of habitat quality and occupancy of breeding birds (Objective 5) 
 
Relations between abundance and environmental variables. Of the 79 abundance models we 
ran, 40% did not pass goodness-of-fit tests in the initial model runs (Table 1). The goodness-of-
fit of the abundance submodel usually was acceptable, but that of the detection submodel was 
not. We strongly suspect that the lack of fit is a consequence of violations of the closure 
assumption due to random or non-random movement of individuals throughout the breeding 
season (see below). We are developing methods to include availability in our models, which we 
suspect will improve the fit of many more models. We also are exploring methods to assess 
movement of species and of individuals (see Conclusions). 
 
No covariates were retained in 11 of the models, indicating that those environmental attributes 
did not explain substantial variation in abundance. In the cases in which models for a given 
species in two or more regions passed goodness-of-fit tests, the retained covariates often were 

Figure 2. Relation between biomass (g/m2) and percent cover of 
cheatgrass. gb, Great Basin.  
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similar among regions. For example, abundance of Gray Flycatchers (Empidonax wrightii) was 
positively associated with percent cover of pinyon and juniper in the central and eastern Great 
Basin, and abundance of MacGillivray’s Warblers (Geothlypis tolmiei) was positively associated 
with the incidence of riparian trees and shrubs in both the western and central Great Basin 
(Appendix D). Despite recent reports that abundances of passerines are declining across the 
United States (Rosenberg et al. 2019), year was positively associated with abundance in all 
models in which it was retained and passed all inferential tests (e.g., covariates did not overlap 
zero and Bayesian p-values for the final model were acceptable). The latter suggests that within 
our study regions, abundances of at least some passerines appear to be increasing rather than 
decreasing over time.  
 
Even with many years of data, many passerines in the Great Basin likely are too rare for rigorous 
modeling of abundance, which is considerably more informative than, and not necessarily 
correlated with, simple occupancy. Hierarchical models of occupancy theoretically are applicable 
to communities in which many species are rare. However, hierarchical models assume that 
species are sufficiently similar ecologically that inference on associations between occupancy of 
rare species and covariates can be drawn from those for common species, which we do not 
believe is the case in our study system.  
 
Table 1. Number of single-species abundance models that met criteria for strong inference. 
 
Region Passed 

goodness-of-
fit tests, 
covariates 
retained 

Passed 
goodness-of-
fit tests, 
uncertain 
inference 
from some 
retained 
covariates  

Passed 
goodness-of-
fit tests, no 
covariates 
retained 

Passed 
goodness-of-
fit tests, one 
or more 
Bayesian p-
values not 
acceptable 

Did not pass 
goodness-of-
fit tests 

Western 5 1 3 4 9 
Central 9 3 3 4 13 
Eastern 3 2 5 3  
Northern 1 1  1 9 

 
Availability and detection. In simulations, detection-weighted abundance models were sensitive 
to low magnitudes of assumption violations. The bias in abundance estimators induced by 
violations of the closure assumption increased as simulated values of either initial abundance or 
detection probability increased. That estimation of the abundance of abundant, easily detected 
species is challenging may seem counterintuitive, but reflects that it is difficult to discriminate 
between failures to detect individuals present at a site and absences due to movement. When 
detection probability is high, the ratio of missed detections to absences due to movement is low, 
increasing the bias in estimators of abundance. 
 
Application of our models to field data suggested that availability was the dominant driver of 
imperfect detection during the breeding season. Furthermore, associations between survey date 
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and availability suggest that availability changed throughout the season, perhaps indicating 
permanent movement. 
 
Our work suggests that lack of closure in study systems may bias inferences about abundance 
from detection-weighted models. Estimators of associations between environmental covariates 
and abundance may be more robust to violations of the closure assumption. Our results indicate 
that in most situations, estimators of the association between abundance and environmental 
covariates from detection-weighted models are minimally biased by even high levels of 
immigration or emigration. The exceptions are most cases with both immigration and emigration. 
Therefore, violations may create strong bias in some applications of abundance models (e.g., 
absolute or relative abundances of species, likelihood of or temporal trends in occurrence).   
 
If detection probability is known a priori to be high, naïve models may be more robust than 
detection-weighted models to violations of the closure assumption, especially if violations 
largely reflect immigration. However, if detection probability is low, the resulting substantial 
bias in naïve models outweighs any increases in robustness.  
 
Understanding of the potential bias created by violations of closure assumptions also was a 
concern for mark-recapture models (Otis 1978). Temporary, random movement did not bias 
estimators in mark-recapture models; some estimators were robust to either permanent 
immigration or permanent emigration, but not both; and other types of movement heterogeneity 
biased some estimators (Kendall 1999). Our results differ with respect to the effects of 
permanent immigration or emigration, perhaps because we modeled movement as non-random or 
because Kendall (1999) compared estimates of the abundance of population rather than site-level 
abundances. Our results are consistent with indications that permanent movement-driven 
violations of the closure assumption bias estimators of occupancy models (Rota et al. 2009, 
Hayes and Monfils 2015), and that the estimators from N-mixture models are sensitive to 
violations of assumptions (Dail and Madsen 2011, Duarte et al. 2018, Link et al. 2018).  
 
Our work builds on previous studies by incorporating a more ecologically informed model of 
movement that is supported by field data and estimating the effect size of availability and false 
absence-driven biases on modeled estimators. Our results suggested that within-breeding season, 
non-random movement of individual birds was common, the magnitude of this movement likely 
would bias estimators of abundance from both detection-weighted models and naïve models that 
do not account for such movement, and common perceptions about seasonal closure of breeding 
territories in birds are too simple.  
 
Thresholds. In the first iteration of our analyses, the site-level abundances of 11 of 12 species 
associated with riparian areas were correlated strongly with total riparian area at the canyon 
level; the abundances of most species appeared to decline sharply beyond a given threshold. The 
abundance of one species, Broad-tailed Hummingbird (Selasphorus platycercus), was strongly 
and positively related to riparian fragmentation. Information on thresholds of riparian area or 
fragmentation above or below which species richness or the likely abundances of species change 
substantially may have practical application given ongoing changes in climate and land use, 
which may result in riparian areas contracting and fragmenting further during the next century. 
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Science delivery 
 
We engaged management partners throughout the project. As the project launched, we benefited 
from the expertise, experience, and networks of Todd Hopkins (then Science Coordinator for the 
Great Basin Landscape Conservation Cooperative) and Mike Pellant (an expert on cheatgrass 
and sagebrush steppe restoration who then was a 30-year employee of the BLM).  
 
We discussed objectives and selected study sites in the eastern and northern Great Basin in 
partnership with federal and state resource managers. In autumn 2015, Fleishman and Hopkins 
traveled to the East Tintic and Sheeprock Mountains, Utah with staff of the Utah Division of 
Wildlife Resources in Salt Lake City and Springville. Additionally, Fleishman communicated 
with the leader of the Community-Based Conservation Program at Utah State University, and in 
March, 2016, attended a meeting of the West Desert Adaptive Resources Management Group in 
Tooele, Utah. Also in autumn 2015, Fleishman and Pellant met with project partners from the 
Bureau of Land Management’s Boise and Bruneau, Idaho offices; Idaho Department of Fish and 
Game; and Mountain Home Air Force Base. This research–management group explored 
potential study locations in the Owyhee Uplands. Fleishman continued to communicate regularly 
with project partners in the western Great Basin, including the Nevada Division of Wildlife, US 
Forest Service, Hawthorne Army Munitions Depot, and Marine Corps Mountain Warfare 
Training Center. Furthermore, Fleishman met with the coordinator of the Great Basin Fire 
Science Exchange to discuss potential outreach opportunities. 
 
In April 2016, Fleishman visited Corvallis, Oregon, where she delivered an invited presentation 
in the Department of Fisheries and Wildlife at Oregon State University. This visit also was an 
opportunity to meet with the director and deputy director of the Northwest Climate Science 
Center, which contributed support to augment the JFSP-funded project. 
 
In mid July 2016, the project team conducted a field workshop with management partners (BLM, 
Idaho Department of Fish and Game, and Mountain Home Air Force Base) in the Owyhee 
Uplands. We also worked with management partners at the Utah Division of Wildlife Resources 
to convene a late July field workshop with the West Desert Adaptive Resources Management 
Group. Following the Utah workshop, Fleishman and project collaborator David Dobkin spent an 
additional day with staff from the Utah Division of Wildlife Resources. Furthermore, we met 
with land managers with the Austin and Tonopah Districts of the Forest Service in the central 
Great Basin, and with resource staff at the Hawthorne Army Munitions Depot and Marine Corps 
Mountain Warfare Training Center in the western Great Basin. 
 
In June and August 2017, we conducted field workshop with management partners in Utah and 
Idaho (BLM and Idaho Department of Fish and Game), respectively. As the project drew to a 
formal close, we again met in the field with our Utah partners.  
 
In spring 2019, Jimi Gragg (Project Leader, Utah Wildlife Action Plan, Utah Division of 
Wildlife Resources) and Fleishman began to plan for a July field workshop, coordinating on 
objectives, potential attendees, logistics, and so forth. The group ultimately included university 
scientists from California and Utah; staff with the US Forest Service, BLM, The Nature 
Conservancy, and various stage programs; and the Nevada Science Coordinator, Science 
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Applications, Pacific Southwest Region, US Fish and Wildlife Service. The workshop provided 
an opportunity for the resource managers to explain some of their priorities while visiting their 
project areas. For example, the group stopped in areas where conifers had been removed and 
where small dams recently had been placed with the aim of restoring riparian vegetation and 
stream banks. Additionally, the workshop allowed university scientists to demonstrate that 
academics are listening and seeking ways to contribute to achieving management priorities. 
Management personnel were frank that some actions being implemented in Utah reflect strong 
social objectives that may or may not coincide with ecological objectives; they indicated that 
certain actions, such as conifer removal, were unlikely to change regardless of the inferences 
from ecological research. Therefore, the project team was uncertain whether rigorous research 
could coincide with or inform some management actions. 
 
In September 2019, Fleishman had a productive meeting with staff at the BLM’s Boise office. 
Much of the meeting focused on methods for detection of cheatgrass, characterization of percent 
cover of cheatgrass, and challenges to estimation of bird abundance. There was considerable 
interest in how UAVs have been or could be used to improve detection of cheatgrass and 
classification of land cover. 
 
We continue to participate in a research-management partnership, led by the USDA Forest 
Service’s Rocky Mountain Research Station, that aims to develop methods for assessing the 
status and management potential of riparian and meadow ecosystems throughout the Great 
Basin. We also continued to collaborate and seek funding to sustain collaborations with 
colleagues in federal and state agencies and programs throughout the Great Basin. As this project 
concludes, we will share products and insights with the Northwest and Southwest Climate 
Adaptation Science Centers and with the Great Basin Fire Science Exchange, and anticipate 
several webinars, science briefs, and follow-up discussions as a result. 
 
 

Conclusions and Applications to Management, Policy, and Future Research 
 
Our work yielded ecological inference related to changes in fuels and fire regimes in the Great 
Basin, insights into what currently is not feasible to infer with reasonable certainty, and potential 
directions for future research by the project team and the greater scientific community.  
 
The current body of publicly available data, whether field or remotely sensed, does not allow 
accurate estimation of percent cover of cheatgrass as a continuous variable. Although some 
publications (e.g., Boyte and Wylie 2016) claimed to estimate percent cover in near-real-time 
with high accuracy, those models were trained and tested on previous spatial data layers with low 
accuracy rather than on extensive field data, and therefore are unlikely to be reliable. 
 
Our work also suggested that remote estimation of cheatgrass cover on the basis of visible 
spectral bands is likely to remain quite difficult, even when images are captured 10 m above 
ground, unless the phenological stage of cheatgrass contrasts sharply with that of surrounding 
vegetation (i.e., is substantially greener or redder) and cheatgrass cover exceeds about 20%. 
Furthermore, the phenology of cheatgrass varies along elevational and topographic gradients, so 
a spatially extensive image or images captured within a relatively narrow temporal window are 
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unlikely to permit spectral identification in all locations. We believe that research with 
hyperspectral data may improve the ability to differentiate annual grasses (e.g., cheatgrass, and, 
where they co-occur in relatively wet, deep soils, Japanese brome [Bromus japonicus]) reliably. 
Detection of invasive bromes also would be simplified considerably if remotely sensed data 
facilitated discrimination throughout the snow-free period. Although the equipment necessary to 
collect hyperspectral data is relatively expensive, it may be worthwhile to explore the methods 
given our evidence that the frequency of fires increases substantially in areas in which observed 
cheatgrass cover is 1–5%. 
 
Nevertheless, we identified relations between precipitation and occurrence, prevalence (given 
occurrence, the proportion of samples in which the cheatgrass was detected), and percent cover 
of cheatgrass. Across the Great Basin, percent cover of cheatgrass increased as primary 
productivity early in the growing season (spring–summer), which was correlated positively with 
precipitation, increased. In the central Great Basin, however, cheatgrass prevalence tended to 
increase as regional winter precipitation increased, but as regional spring precipitation decreased. 
The discrepancy between regional and ecosystem-level relations suggests that it may be 
worthwhile to explore regional variation in precipitation and productivity peaks in greater detail.  
 
We also identified relations between elevation and occurrence, prevalence, and percent cover of 
cheatgrass. Elevation was associated negatively with occurrence of cheatgrass in the central 
Great Basin and percent cover of cheatgrass across the Great Basin. However, given presence, 
cheatgrass prevalence in the central Great Basin was greater at higher elevations, perhaps 
reflecting that precipitation generally increases as elevation increases.  
 
Our results do not support the use of livestock grazing to suppress cheatgrass. Livestock grazing 
with the aim of suppressing cheatgrass may be especially counterproductive in unburned areas in 
which native perennial grasses may remain viable. Our discussions with some managers indicate 
that use of livestock grazing with the ostensible aim of cheatgrass suppression is driven as much 
by social aims as by ecological aims. 
 
Correlations between biomass and percent cover of cheatgrass at different spatial resolutions and 
in different years generally appear to be strong. Yet our results suggest regional differences in 
this relation, and highlight the challenges of deriving strong inference from multiple sets of 
empirical data that were collected at different extents and resolutions and with different methods. 
 
The results of our abundance models indicate that although general associations between 
breeding birds and land-cover types are known, even relatively detailed measures of vegetation 
composition and structure do not necessarily serve as reliable predictors of abundances of these 
birds. We believe that projections of bird distributions or abundances on the basis of simple maps 
of land cover, or sparse field data (e.g., Breeding Bird Surveys, one-time or one-season surveys) 
are unlikely to be accurate when evaluated with independent field data. Our results also may 
suggest that many years of data on breeding birds are necessary to account for stochastic or 
deterministic variation in distributions and abundances, and therefore to draw reliable inference 
to inform land-use decisions. 
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Analyses of data for this project yielded strong evidence of within-season and among-year 
elevational movement of breeding birds in the Great Basin. Field studies of the elevational 
movements of organisms as global temperatures increase indicate that a moderate proportion of 
species have moved upward, a smaller proportion have moved downward, and, to date, many 
species have not moved. Such studies largely have compared species distributions between past 
and contemporary time periods, within limited geographical areas, or over short temporal 
extents. Temporal discontinuity limits identification of mechanisms, and small spatial and short 
temporal extent limits the ability to generalize. Transferability further is limited because 
responses to environmental change vary among species and the abiotic and biotic variables that 
are associated with local distributions of a given species vary spatially.  
 
Our ongoing research aims to advance mechanistic understanding of these two forms of 
movement, and of the role of each in distributional shifts over decades. For example, within 
seasons, may be associated with microclimate, the phenology of food sources, intraspecific and 
interspecific competition, or predation. We believe that complementary empirical and analytical 
work by other members of the research community would be highly fruitful. We plan to test 
hypotheses related to the attributes of individuals that move, the timing of movement, and the 
processes associated with movement. These phenomena may affect the distributions and 
abundances of individual species as climate and land use continue to change. Making robust and 
generalizable predictions about species distributions across elevations and latitudes is a major, 
enduring scientific challenge with mounting practical relevance. Meeting this challenge may 
greatly increase the likelihood that management actions achieve societal goals for conservation 
of species and ecosystem function, and for fiscal responsibility. 
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Fleishman, E. 2019. Incidental and long-distance bird observations in the Owyhee Uplands, 
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Appendix C. Covariates included in models of the abundance of breeding birds. 
 
Edges were measured as total length (m) within a 500-m buffer around the transect route. Aspen could not be differentiated in the 
central Great Basin. As a result, edge covariates that included aspen were not included in abundance models for that region. 
Covariates were removed from the final model if its variance inflation factor was > 4 or if its correlation with another covariate was  > 
0.75 and it had the higher variance inflation factor. We did not detect Pinus in the northern Great Basin, and therefore covariates that 
included Pinus were not included in abundance models for that region. All models included elevation and year (not noted in the table). 
 
Bird data through 2018, and vegetation data and metadata, are archived with the Forest Service Research Data Archive (see Appendix 
B).  
 
In the western Great Basin, montane conifers included Abies spp., Pinus albicaulis, P. contorta, P. flexilis, P. jeffreyi, and unidentified 
firs. Riparian trees included Alnus, Cornus sericea, Elaeagnus angustifolia, Populus, Prunus emarginata, Salix, Sambucus nigra ssp. 
cerulea, and Shepherdia argentea. Riparian shrubs and trees included Alnus, Cornus sericea, Elaeagnus angustifolia, Populus, Prunus 
emarginata, P. virginiana, Rosa woodsii, Salix, Shepherdia argentea, Sambucus nigra, and sedges and rushes. Xeric shrubs included 
Artemisia, Chamaebatiaria millefolium, Chrysothamnus, Ephedra, Ericameria, Grayia, Prunus andersonii, P. tridentata, Rhamnus 
californica, Tetradymia, and heathers. 
 
In the central Great Basin, the montane conifer was Pinus flexilis. Riparian trees included Betula occidentalis, Cornus sericea, 
Populus, Prunus virginiana, Salix, and Sambucus nigra spp. cerulea. Riparian shrubs and trees included Acer glabrum, Betula 
occidentalis, Cornus sericea, Populus, Prunus virginiana, Rosa woodsii, Salix, and Sambucus nigra. Xeric shrubs included Artemisia, 
Chrysothamnus, Ephedra, Ericameria, Grayia, Prunus andersonii, Purshia stansburiana, Purshia tridentata, Salsola, and Sarcobatus 
vermiculatus. 
 
In the eastern Great Basin montane conifers included Abies concolor, Pseudotsuga menziesii, and unidentified firs. Riparian trees 
included Populus, Prunus virginiana, and Salix. Riparian shrubs and trees included Acer grandidentatum, Cornus sericea, Populus, 
Prunus virginiana, Rhus, Rosa woodsii, Salix, and Sambucus nigra. Xeric shrubs included Artemisia, Atriplex, Chrysothamnus, 
Ephedra, Ericameria, Purshia mexicana var. stansburyana, Purshia tridentata, Sarcobatus vermiculatus, and Tetradymia. 
 
In the northern Great Basin, the montane conifer was Pseudotsuga menziesii. Riparian trees included Populus angustifolia and Salix. 
Riparian shrubs and trees included Populus, Prunus virginiana, Rosa woodsii, Salix, and Sambucus nigra. Xeric shrubs included 
Artemisia, Chrysothamnus, Ephedra, Ericameria, Purshia tridentata, and Tetradymia. 



Species

Mourning Dove 
incidence of 
grasses

incidence of 
riparian trees and 
shrubs

incidence of 
xeric shrubs

percent cover of 
pinyon and 
juniper

percent cover of 
riparian trees

Broad-tailed Hummingbird

hard edges 
between riparian 
meadow and 
shrubs

hard edges 
between riparian 
woody and 
shrubs

incidence of 
riparian trees 
and shrubs

percent cover of 
pinyon and 
juniper

soft edges between 
riparian meadow 
and shrubs

soft edges 
between riparian 
woody and shrubs 
(removed from 
central)

Northern Flicker

hard edges 
between shrubs 
and conifers

incidence of 
riparian trees and 
shrubs

percent cover 
of montane 
conifers

percent cover of 
pinyon and 
juniper

percent cover of 
riparian trees 
(removed from 
central)

soft edges 
between shrubs 
and conifers

percent cover of 
Populus

Gray Flycatcher

hard edges 
between shrubs 
and conifers

incidence of xeric 
shrubs

percent cover 
of pinyon and 
juniper

soft edges 
between shrubs 
and conifers

Dusky Flycatcher

hard edges 
between riparian 
woody and 
shrubs

incidence of 
riparian trees and 
shrubs

percent cover 
of mountain 
mahogany

percent cover of 
riparian trees 
(not included in 
central)

proportion of 
canyon area that is 
canyon bottom (100 
m buffer around 
transect line)

soft edges 
between riparian 
woody and shrubs

Plumbeous Vireo
incidence of xeric 
shrubs

percent cover of 
mountain 
mahogany

percent cover 
of juniper

percent cover of 
pinyon

percent cover of 
pinyon and juniper 
(removed from 
eastern)

Warbling Vireo

hard edges 
between riparian 
woody and 
conifers

incidence of 
riparian trees and 
shrubs

percent cover 
of Populus

soft edges 
between aspen 
and mixed 
conifers (not 
applicable to 
central)

soft edges between 
riparian woody and 
conifers

Pinyon Jay
incidence of xeric 
shrubs

percent cover of 
juniper

percent cover 
of montane 
conifers

percent cover of 
pinyon

percent cover of 
pinyon and juniper

proportion of 
canyon area that 
is canyon bottom 
(500 m buffer 
around transect 
line)

Woodhouse's Scrub-Jay

incidence of 
riparian trees and 
shrubs 

incidence of xeric 
shrubs

percent cover 
of juniper

percent cover of 
pinyon

percent cover of 
pinyon and juniper 
(removed from 
central)

Clark's Nutcracker
percent cover of 
montane conifers

percent cover of 
pinyon (removed 
from central)

percent cover 
of pinyon and 
juniper



Species

Horned Lark
incidence of 
grasses

incidence of xeric 
shrubs

percent cover 
of juniper

percent cover of 
pinyon

percent cover of 
pinyon and juniper 
(removed from 
eastern)

Mountain Chickadee
incidence of xeric 
shrubs

percent cover of 
juniper

percent cover 
of montane 
conifers

percent cover of 
pinyon 
(removed from 
western)

percent cover of 
pinyon and juniper 
(not included in 
central)

Bushtit

incidence of 
riparian trees and 
shrubs

incidence of xeric 
shrubs

percent cover 
of pinyon and 
juniper

percent cover of 
riparian trees

soft edges between 
shrubs and conifers

Rock Wren
incidence of xeric 
shrubs

percent cover of 
pinyon and 
juniper

proportion of 
canyon area 
that is canyon 
bottom (500 m 
buffer around 
transect line)

House Wren

hard edges 
between riparian 
woody and 
conifers

incidence of 
riparian trees and 
shrubs

percent cover 
of Populus

percent cover of 
riparian trees 
(removed from 
western and 
central)

soft edges between 
riparian woody and 
conifers

Blue-Gray Gnatcatcher

incidence of 
riparian trees and 
shrubs

incidence of xeric 
shrubs

percent cover 
of pinyon and 
juniper

percent cover of 
riparian trees 
(not included in 
central)

Mountain Bluebird
incidence of 
grasses

incidence of 
riparian trees and 
shrubs

percent cover 
of pinyon and 
juniper

percent cover of 
Populus

Hermit Thrush

hard edges 
between riparian 
woody and 
conifers

incidence of 
riparian trees and 
shrubs

percent cover 
of mountain 
mahogany

percent cover of 
montane 
conifers

percent cover of 
riparian trees

soft edges 
between riparian 
woody and 
conifers

American Robin

hard edges 
between riparian 
meadows and 
conifers

hard edges 
between riparian 
meadows and 
riparian woody

hard edges 
between 
shrubs and 
conifers 
(removed from 
western)

incidence of 
riparian trees 
and shrubs

percent cover of 
riparian trees (not 
included in central)

soft edges 
between shrubs 
and conifers

American Robin (western 
Great Basin only)

hard edges 
between riparian 
woody and 
conifers

percent cover of 
pinyon and 
juniper

percent cover 
of Populus

soft edges 
between riparian 
woody and 
conifers 



Species

Sage Thrasher

hard edges 
between shrubs 
and conifers

incidence of xeric 
shrubs

soft edges 
between 
shrubs and 
conifers

MacGillivray's Warbler

hard edges 
between riparian 
woody and 
shrubs

incidence of 
riparian trees and 
shrubs

percent cover 
of Populus

percent cover of 
riparian trees 
(removed from 
western, not 
included in 
central)

soft edges between 
riparian woody and 
shrubs

Yellow Warbler

hard edges 
between riparian 
meadow and 
shrubs (removed 
from western)

hard edges 
between riparian 
meadows and 
riparian woody

hard edges 
between 
riparian woody 
and shrubs

incidence of 
riparian trees 
and shrubs

soft edges between 
riparian meadows 
and shrubs

soft edges 
between riparian 
woody and shrubs

Yellow-rumped Warbler

hard edges 
between aspen 
and mixed shrubs 
(not applicable to 
central)

incidence of 
riparian trees and 
shrubs

percent cover 
of montane 
conifers

percent cover of 
pinyon and 
juniper

percent cover of 
Populus

soft edges 
between aspen 
and mixed 
conifers (not 
applicable to 
central)

soft edges 
between aspen 
and mixed 
shrubs (removed 
from western, 
not applicable to 
central)

Black-throated Gray Warbler
incidence of xeric 
shrubs

percent cover of 
pinyon and 
juniper

percent cover 
of riparian 
trees

Wilson’s Warbler

hard edges 
between riparian 
meadows and 
conifers 
(removed from 
western)

hard edges 
between riparian 
meadows and 
riparian woody

hard edges 
between 
riparian woody 
and shrubs

incidence of 
riparian trees 
and shrubs

percent cover of 
montane conifers 

soft edges 
between riparian 
meadows and 
conifers

soft edges 
between riparian 
woody and 
shrubs

Green-tailed Towhee
incidence of 
grasses

incidence of xeric 
shrubs

percent cover 
of juniper 
(removed from 
western)

percent cover of 
pinyon  
(removed from 
western)

percent cover of 
pinyon and juniper 
(removed from 
eastern)

Spotted Towhee

hard edges 
between shrubs 
and conifers 
(removed from 
western)

incidence of 
riparian trees and 
shrubs

incidence of 
xeric shrubs

percent cover of 
pinyon and 
juniper

soft edges between 
shrubs and conifers

Chipping Sparrow

hard edges 
between shrubs 
and conifers

incidence of 
grasses

incidence of 
riparian trees 
or shrubs 

incidence of 
xeric shrubs

percent cover of 
montane conifers

percent cover of 
pinyon and juniper

soft edges 
between shrubs 
and conifers



Species

Brewer’s Sparrow

hard edges 
between shrubs 
and conifers 
(removed from 
western)

incidence of xeric 
shrubs

percent cover 
of pinyon and 
juniper

soft edges 
between shrubs 
and conifers

Vesper Sparrow
incidence of 
grasses

incidence of xeric 
shrubs

percent cover 
of juniper

Lark Sparrow
incidence of 
grasses

incidence of xeric 
shrubs

percent cover 
of juniper

percent cover of 
pinyon

percent cover of 
pinyon and juniper 
(removed from 
eastern)

Fox Sparrow

hard edges 
between riparian 
woody and 
shrubs

incidence of 
riparian trees and 
shrubs

percent cover 
of riparian 
trees (central: 
removed)

soft edges 
between riparian 
woody and 
shrubs

Song Sparrow

hard edges 
between riparian 
meadow and 
shrubs

hard edges 
between riparian 
meadows and 
riparian woody

hard edges 
between 
riparian woody 
and shrubs

incidence of 
riparian trees 
and shrubs

soft edges between 
riparian woody and 
shrubs

Dark-eyed Junco

incidence of 
riparian trees and 
shrubs

percent cover of 
montane conifers

percent cover 
of pinyon and 
juniper

percent cover of 
riparian trees 
(not included in 
central)

Western Tanager

hard edges 
between shrubs 
and conifers 
(removed from 
western)

incidence of 
riparian trees and 
shrubs

percent cover 
of montane 
conifers

percent cover of 
pinyon and 
juniper

soft edges between 
shrubs and conifers

Black-headed Grosbeak

hard edges 
between riparian 
woody and 
conifers

incidence of 
riparian trees and 
shrubs

percent cover 
of pinyon and 
juniper

percent cover of 
riparian trees

soft edges between 
riparian woody and 
conifers

Lazuli Bunting

hard edges 
between riparian 
woody and 
shrubs

incidence of 
riparian trees and 
shrubs

incidence of 
xeric shrubs

percen cover of 
Populus

percent cover of 
mountain 
mahogany

soft edges 
between riparian 
woody and shrubs

Western Meadowlark
incidence of 
grasses

incidence of xeric 
shrubs

percent cover 
of juniper

percent cover of 
pinyon

percent cover of 
pinyon and juniper 
(removed from 
eastern)

Brewer’s Blackbird

hard edges 
between riparian 
meadow and 
shrubs

incidence of 
grasses

incidence of 
xeric shrubs

percent cover of 
pinyon and 
juniper

soft edges between 
riparian meadow 
and shrubs



Species

Cassin's Finch

hard edges 
between shrubs 
and conifers

percent cover of 
montane conifers

percent cover 
of pinyon and 
juniper

soft edges 
between shrubs 
and conifers
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Appendix D. Results of models of the abundance of breeding birds. 
 
Results of single-species abundance models for breeding birds in four regions of the Great Basin. Models for a given species could not 
be run for all regions; in some cases a given species was not detected in all regions, and in some cases abundances in a given region 
were insufficient for rigorous modeling. covar, covariate; SD, standard deviation. The sign of the covariate mean value indicates the 
direction of association with abundance. Overlaps zero, values of the covariate overlap zero (and therefore are not considered highly 
statistically significant); 1, yes, 0, no. p, Bayesian p-values for the detection and abundance submodels. These values are associated 
with the full model rather than with a given covariate. A Bayesian p-value ~0.5 is considered ideal, and values 0.1–0.9 are considered 
acceptable. Gray shading indicates that on the basis of extremely large standard deviations of the covariate, covariate values that 
overlap zero, or Bayesian p-values that are < 0.1 or > 0.9, inference from the model is uncertain.  
 
 



Species

Covariates 
in final 
model, 
western 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
central 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Mourning Dove

Broad-tailed 
Hummingbird

Did not pass 
goodness of 
fit tests

Northern Flicker

percent 
cover of 
Populus 0.26 0.09 0 0.91 0.46
year 0.24 0.07 0

Gray Flycatcher

percent 
cover of 
pinyon and 
juniper 0.40 0.10 0 0.56 0.42

Dusky Flycatcher

Did not pass 
goodness of 
fit tests

Did not pass 
goodness of 
fit tests

Plumbeous Vireo

Warbling Vireo

Did not pass 
goodness of 
fit tests

Did not pass 
goodness of 
fit tests

Pinyon Jay

Did not pass 
goodness of 
fit tests



Species

Covariates 
in final 
model, 
western 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
central 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Woodhouse's Scrub-
Jay

Did not pass 
goodness of 
fit tests

Clark's Nutcracker

Did not pass 
goodness of 
fit tests

Horned Lark

Mountain Chickadee

percent cover 
of pinyon and 
juniper 0.41 0.10 0 0.99 0.55

Did not pass 
goodness of 
fit tests

Bushtit

Did not pass 
goodness of 
fit tests

Did not pass 
goodness of 
fit tests

Rock Wren year 0.39 0.05 0 0.58 0.53

House Wren
percent cover 
of Populus 0.60 0.12 0 0.02 0.44

percent 
cover of 
Populus 0.59 0.10 0 0.20 0.27

Blue-Gray 
Gnatcatcher elevation -1.15 0.22 0 0.01 0.28

incidence of 
xeric shrubs 0.39 0.57 0 0.11 0.54

year 0.24 1.07 0 elevation -0.93 0.15 0

Mountain Bluebird

Did not pass 
goodness of 
fit tests



Species

Covariates 
in final 
model, 
western 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
central 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

American Robin
No covariates 
retained

incidence of 
riparian trees 
and shrubs 0.21 2.38 1 0.82 0.52
year 0.27 0.04 0

MacGillivray's 
Warbler

incidence of 
riparian trees 
and shrubs 0.41 0.11 0 0.15 0.37

incidence of 
riparian trees 
and shrubs 0.54 0.87 0 0.73 0.51
hard edges 
between 
riparian 
woody and 
shrubs 0.68 0.39 1
year 0.21 0.04 0

Yellow Warbler

Did not pass 
goodness of 
fit tests

Did not pass 
goodness of 
fit tests

Yellow-rumped 
Warbler

Did not pass 
goodness of 
fit tests elevation 0.40 0.13 0 0.94 0.50

Black-throated Gray 
Warbler

percent cover 
of pinyon and 
juniper 0.54 0.16 0 0.58 0.44

percent 
cover of 
pinyon and 
juniper 0.52 0.08 0 0.37 0.12

year 0.36 0.06 0 elevation -0.33 0.23 0
year 0.25 0.03 0



Species

Covariates 
in final 
model, 
western 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
central 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Wilson’s Warbler

incidence of 
riparian trees 
and shrubs 0.83 86.90 1 0.88 0.58

No 
covariates 
retained

year 0.55 0.08 0

Green-tailed Towhee

Did not pass 
goodness of 
fit tests

Did not pass 
goodness of 
fit tests

Spotted Towhee

Did not pass 
goodness of 
fit tests

Did not pass 
goodness of 
fit tests

Chipping Sparrow

No 
covariates 
retained

Brewer’s Sparrow
incidence of 
xeric shrubs 1.16 0.15 0 0.13 0.67

incidence of 
xeric shrubs 0.49 0.10 0 0.98 0.79

percent cover 
of pinyon and 
juniper -0.74 0.16 0

percent 
cover of 
pinyon and 
juniper -0.58 0.13 0

year 0.19 0.04 0 elevation 0.80 0.12 0
year 0.23 0.03 0

Vesper Sparrow 

percent 
cover of 
pinyon and 
juniper -1.74 0.39 0 0.82 0.63



Species

Covariates 
in final 
model, 
western 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
central 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

elevation 1.34 0.23 0

Lark Sparrow

Fox Sparrow

Did not pass 
goodness of 
fit tests

incidence of 
riparian trees 
and shrubs 0.43 24.40 1 0.68 0.54
hard edges 
between 
riparian 
woody and 
shrubs 1.96 0.41 0

Song Sparrow

Did not pass 
goodness of 
fit tests

No 
covariates 
retained

Dark-eyed Junco

percent cover 
of montane 
conifers 0.50 0.12 0 0.25 0.45 elevation 0.61 0.13 0 0.83 0.61
elevation 0.51 0.20 0 year 0.25 0.82 0
year 0.18 0.03 0

Western Tanager

percent cover 
of montane 
conifers 0.71 0.14 0 0.31 0.46 year 0.47 0.07 0 0.79 0.48
percent cover 
of pinyon and 
juniper 0.48 0.12 0

Black-headed 
Grosbeak

No covariates 
retained elevation -0.62 1.04 0 0.66 0.47

year 0.27 2.57 0



Species

Covariates 
in final 
model, 
western 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
central 
Great Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Lazuli Bunting elevation -1.11 0.18 0 0.91 0.91

incidence of 
riparian trees 
and shrubs 0.50 0.13 0 0.93 0.56

year 0.44 0.07 0 elevation -0.55 0.15 0
year 0.97 0.09 0

Western Meadowlark

Brewer’s Blackbird

Did not pass 
goodness of 
fit tests

Cassin's Finch
No covariates 
retained

Did not pass 
goodness of 
fit tests



Species

Mourning Dove

Broad-tailed 
Hummingbird

Northern Flicker

Gray Flycatcher

Dusky Flycatcher

Plumbeous Vireo

Warbling Vireo

Pinyon Jay

Covariates 
in final 
model, 
eastern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
northern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests

percent 
cover of 
pinyon and 
juniper 0.62 0.16 0 0.24 0.34

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests

elevation 1.38 0.25 0 0.22 0.40 year -0.28 0.06 0 0.93 0.36
year -0.26 2.83 1

No 
covariates 
retained



Species

Woodhouse's Scrub-
Jay

Clark's Nutcracker

Horned Lark

Mountain Chickadee

Bushtit

Rock Wren

House Wren

Blue-Gray 
Gnatcatcher

Mountain Bluebird

Covariates 
in final 
model, 
eastern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
northern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

elevation -2.49 0.48 0 0.49 0.50

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests

No 
covariates 
retained

No 
covariates 
retained

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests



Species

American Robin

MacGillivray's 
Warbler

Yellow Warbler

Yellow-rumped 
Warbler

Black-throated Gray 
Warbler

Covariates 
in final 
model, 
eastern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
northern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests

percent 
cover of 
pinyon and 
juniper 0.45 0.14 0 0.03 0.28



Species

Wilson’s Warbler

Green-tailed Towhee

Spotted Towhee

Chipping Sparrow

Brewer’s Sparrow

Vesper Sparrow 

Covariates 
in final 
model, 
eastern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
northern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

incidence of 
grasses 0.66 1.99 0 0.03 0.34

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests

elevation 1.05 0.23 0

No 
covariates 
retained

No 
covariates 
retained

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests

percent 
cover of 
pinyon and 
juniper -1.54 0.37 0 0.44 0.35

percent 
cover of 
juniper -0.07 0.16 0 0.58 0.50

elevation -1.11 0.28 0 year 0.36 0.04 0

percent 
cover of 
juniper -0.76 0.22 0 0.83 0.41



Species

Lark Sparrow

Fox Sparrow

Song Sparrow

Dark-eyed Junco

Western Tanager

Black-headed 
Grosbeak

Covariates 
in final 
model, 
eastern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
northern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

year 0.08 49.13 1

percent 
cover of 
pinyon -1.12 25.33 1 0.79 0.64
elevation -1.70 1.06 0



Species

Lazuli Bunting

Western Meadowlark

Brewer’s Blackbird

Cassin's Finch

Covariates 
in final 
model, 
eastern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

Covariates 
in final 
model, 
northern 
Great 
Basin

covar 
mean

covar 
SD

overlaps 
zero

p, 
detection

p, 
abundance

percent 
cover of 
pinyon -2.02 1.44 0 0.97 0.49
elevation -1.97 0.39 0
year 0.54 0.09 0

No 
covariates 
retained, did 
not pass 
goodness of 
fit tests
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