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Abstract 

 

The escalating awareness of non-forested landscapes and realization that more emphasis is 

needed for an all lands approach to management increasingly requires timely information to 

improve management effectiveness. The Forest Vegetation Simulator (FVS) has been used in a 

large number of studies to project future vegetation conditions and is often used in conjunction 

with the richly populated Forest Inventory and Analysis (FIA) database. The FVS lacks the 

routines and algorithms for dealing with non-forest landscapes and is therefore only applicable 

on a limited number of landscapes. This obviates the need for simulation capabilities in non-

forested environments, in addition to improved characterization of understory conditions 

(herbaceous and shrub species) in the FVS. In response to this need, we developed the 

Rangeland Vegetation Simulator (RVS) and new models for estimating understory conditions in 

forested landscapes. The RVS is calibrated on 112 unique sites and enables simulation of 

ecological dynamics, production and fuels in either a spatially explicit manner or as a processor 

of inventory data much like the FVS.  Validation of the RVS, in this inaugural development, 

suggests significant promise for its use to describe vegetation and fuel data when the structure 

and composition are given, but its ability to describe succession is limited and in some cases 

unrealistic. The premier outputs of the vegetation simulator are: 

1) Standing biomass, carbon, and annual production of herbs and shrubs (including 

standing dead herbaceous material). 

2) Vegetation structure, composition, and seral stage 

3) Fuelbed properties (1, 10, 100, 1000 hr fuel) and fire behavior fuel models 

4) Response of these attributes to herbivory and fire  

 

The Ecological dynamics underlying the RVS are LANDFIRE’s Biophysical Settings (BPS) 

models. These models do not account for invasive species and other contemporary ecological 

theory. As a result, in this project, a prototype application using Ecological Sites and their 

associated state-transition models were merged with the RVS fuel, growth and biomass 

algorithms to test the efficacy for describing fuel bed properties. This was funded as a separate 

project but is really part of this larger effort to improve non-forest simulation and management 

Results indicate significant promise for Ecological Sites replacing the BPS models of succession 

for a national strategy involving rangeland ecological simulation in support of rangeland 

management and administration.  

 

A final component of this project was development of equations to predict understory response 

to overstory and site factors in forested environments, especially focused on herbaceous and 

shrub structure. The understory equations were developed for 4 major forest types covering 

approximately 44 million of acres in the U.S. including: lodgepole pine, Douglas fir, grand fir, 

and ponderosa pine. McFadden statistics range from 0.22 for herb height to 0.87 for tally tree 

cover of the Pacific Northwest FIA Region.  Predictions of shrub cover and height are relatively 

more accurate than those of herbaceous species.  

 

Background and Purpose 

 

This final report describes results from three intertwined projects, “Development of the 

Rangeland Vegetation Simulator: A module for FVS”, Development of the Rangeland 
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Vegetation Simulator, and Incorporating Ecological Sites into the Rangeland Vegetation 

Simulator which were funded to address the following project task identified in the RFP: “Non-

Forest and Understory Fuels Growth, Response and Succession”. We include all three reports 

weaved into a single larger report because of the synergies between these three, very closely 

related, projects.  

 

Non-forest landscapes occupy roughly 662 million acres in the coterminous U.S. and account for 

many of the wildland fires observed through time (Reeves and Mitchell 2011). Non-forest 

vegetation responds much more quickly and with greater relative growth rates and variability 

than forested environments. Despite these factors the ecological and fire communities lack a 

system that enables quantification of successional dynamics and associated structure, 

composition or fuelbed characteristics. Therefore a system is needed which enables 

quantification of vegetation composition and structure in response to management or disturbance 

with an emphasis on providing data and information on fuelbed characteristics in sufficient detail 

to permit estimations of fire behavior and effects in support of improving the Forest Vegetation 

Simulator. Such a system is needed because succession, growth and fuels of non-forest 

vegetation are not estimated in the FVS although current decision support systems such as 

Interagency Fuels Treatment Decision Support System (IFT-DSS) require this information.  

 

This situation inspired our project to develop a comprehensive system for simulating succession, 

productivity, and fuels in non-forest environments. This system is called the Rangeland 

Vegetation Simulator (RVS). The RVS provides information on an annual time step and can be 

used to evaluate plot level data or be used in a spatially explicit mode.  The system was designed 

to be relatively simple to execute in comparison to more sophisticated ecosystem simulation 

models such as the Century model (Parton et al., 1993) and Biome-BGC (Running  et al., 1993). 

Although it lacks the sophistication of these classic ecological models, the RVS takes advantage 

of remote sensing data as a primary input and, importantly, it is calibrated to quantify the 

vegetation response to wildfire and grazing.  Grazing effects the fuelbed profile, vegetation cover 

and height but does not necessarily affect the successional dynamics since the BPS succession 

models do not account for modern grazing regimes used with domestic herbivores. Presently, 

capacity exists for operating on 112 distinct biophysical sites and yields up to 20 parameters 

describing ecological processes or quantities for each year in a simulation.   

 

A critical element for readers to recognize is the tight linkage between the Biophysical Settings 

(BPS) geospatial data product, its associated successional models, and the RVS. The BPS 

controls several key processes. First and most significantly, the BPS controls the estimated 

successional development of each stand which inherently depicts vegetation prior to settlement 

by Euro-American’s. Second, the BPS creates a spatial context within which various processes 

and parameters are controlled. For example, for climate, growing conditions and growth rates are 

constrained for each BPS. Using BPS to control estimated growth rates and annual production 

prevents illogical combinations of stand properties to be simulated. For example, a shortgrass 

prairie will not reach annual production of 6000 lbs ac-1 since the climate and growth rates are 

informed and calibrated for each BPS individually. These concepts and others are discussed at 

length below including algorithmic development. Hopefully, this inaugural program 

development portends years of model use and improvement to come.  
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This system provides two overarching benefits:  

1) A research tool enabling projections of future vegetation conditions improving our ability 

to estimate the effects of management actions on future vegetative states.  

2) A decision support tool enabling land management agencies to more accurately describe 

post-disturbance successional dynamics, and most importantly, estimate wildland fire 

behavior and effects from a rich suite of fuelbed characteristics that the RVS offers.  

This project also tested use of Ecological Sites in a state-transition simulation modeling context 

in concert with the ST-SIM software platform.  This was tested on the Loamy Plains of North 

Central Colorado across a continuum of grazing intensities. Bias and mean absolute error of 

annual production were -58 and 177 lbs ac-1 respectively. In addition to prototyping use of 

Ecological Sites for coupling with the RVS, the relationships between Ecological Sites and 

LANDFIRES’s BPS data were evaluated.  All Ecological Sites with vetted descriptions were 

mapped for the western U.S. and overlain with the BPS data. Data summaries were developed to 

describe the number and complexity of Ecological Sites with respect to the various BPS 

categories. This combined database was used to answer a series of questions to ultimately 

determine the level of effort required to develop a national strategy for consistent and 

comprehensive ecological simulation in support of rangeland management and administration. 

For complex areas, as many as 264 Ecological Sites are required for full coverage, however, 

usually only a few Ecological Sites are required to simulate a majority of the area.  In some cases 

Ecological Sites cover greater than 7 million acres enabling good economies of scale.  

 

The third phase of this project developed predictive equations for estimating understory 

vegetation structure in response as a function of overstory conditions and site characteristics. As 

with the development of the RVS, these equations enable new modeling in support of fire 

behavior and effects in the understory (shrubs, and herbaceous species). These new equations, 

developed by analysis of over 6,500 FIA plots, are available for use in the FVS program to 

enabling more accurate predictions of herbaceous and shrub structure. McFadden statistics range 

from 0.22 for herb height to 0.87 for tally tree cover of the Pacific Northwest FIA Region.   

In this report we provide a detailed assessment of these three project objectives of: 

1) Development of the RVS for quantifying biophysical elements and estimating 

successional trajectories of non-forest lands with distinct application to fuelbed 

properties.  

2) Evaluating use of Ecological Sites with the RVS via ST-SIM 

3) Develop predictive equations for selected forest types of the western U.S. for 

estimating understory structure 

 

In the first half of the report we discuss the development of the RVS while in the second and 

third we discuss merging Ecological Sites and the development of the understory equations 

respectively. This project is obviously different than more traditional research projects where the 

problem is identified, data are collected, statistical analysis is performed and results are 

presented. We will be publishing results of the models use and development in the future, and we 

have spent a great deal of time warehousing and cataloging the computer code developed over 4 

years.   
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1.0 OBJECTIVE 1:  Creating the Rangeland Vegetation Simulator 

 

1.0.1 Methods 

 

1.0.1.1 The Code 

 

RVS is an open source C++ library written for multi-platform deployment.  The code is hosted 

on Github at https://github.com/rlank/RVS.  Current development is focused on Windows, but a 

makefile has been written and tested for Linux.  C++ was chosen for compatibility with the 

Forest Vegetation Simulator (FVS), which is written primarily in FORTRAN, but also in C and 

C++.  Each module exists in its own namespace, and the program can be used and imported into 

other code projects if technical users want to access certain features of RVS externally. Data for 

RVS is held in a single SQLite database.  SQLite was chosen because of its simplicity and 

compatibility with FVS.  SQLite is free and open source, and RVS generally backwards supports 

old versions of SQLite (but is shipped with the latest version). Since RVS is highly dynamic, this 

means each simulation requires numerous database queries.  These are very slow.  Also, again 

because of RVS’ dynamic nature, not all of the input database is needed for every simulation.  

Nor should it be loaded, because it would be a waste of memory, so, RVS holds a dictionary of 

active queries.  Each time a query is requested, the backend observer (a subroutine) checks to see 

if this data has been requested before.  If it hasn’t been queried before, it does actually go to the 

disk and get the data.  Then, however, it adds it to an in-memory SQLite database.  This database 

is created when RVS starts and is deleted when RVS is done.  As the simulation continues, if the 

data is requested again the observer can pull it out of the in-memory database rather than the 

disk.  This improved RVS performance over 1000% and RVS can now run 1500 plots for 50 

years each on a mid-range desktop in about 30 seconds. 

 

1.0.1.2 User Input 

 

The purpose of this section is to highlight how the RVS works and what is generally required to 

enable simulation. While contemplating the methods presented here the reader should remember 

that this system was designed to estimate fuelbed parameters at the expense of other system 

properties.  It is not possible to give priority to all elements within the simulation system but we 

attempt to clearly identify assumptions and point out weaknesses in the system schema.  It is also 

important to consider that, for the purposes of estimating elements of fire behavior, there is little 

difference between a site exhibiting 500 lbs ac-1 annual production of herbaceous fuels and a site 

exhibiting 850 lbs ac-1if a standard fire behavior processor such as Behave (Andrews and Bevins 

2003), NEXUS (Scott 1999) or FARSITE (Finney 2004) is used since both stands would likely 

be classified using the same stylized fuel model (likely a GR1 from the Scott and Burgan (2005) 

set).  So, a high level of accuracy may not be required in many model elements when estimating 

fire behavior is a priority (the situation may be different where fire effects such as consumption 

is an issue).  In addition, from a composition perspective it may not be necessary to, for example, 

differentiate Artemisia tridentata subsp. wyomingensis (Wyoming big sagebrush) from (basin big 

sagebrush) (Artemisia tridentata subsp. tridentata) since both will produce very similar fire 

behavior, and effects. Nor might it be necessary to differentiate Bromus inermus (smooth brome) 

from Agropyron cristatum (crested wheatgrass) on a given site since both will produce similar 

fire behavior and effects such as emissions and fuel consumed.  So, when evaluating model 

https://github.com/rlank/RVS
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assumptions and potential usefulness and limitations consider the efficacy of the system as much 

as the accuracy. 

 

To invoke the RVS program, a user needs to supply a latitude, longitude and simulation design 

criteria. It is also strongly recommended that users supply vegetation inventory information 

including vegetation cover, height and composition, but this is not totally necessary. Without 

user interaction, a simulation can be performed but should not be considered reliable and these 

types of simulations are considered “blind simulations” (Table 1). Prior to simulation, for each 

plot in the users’ database, a series of geospatial data sources must be sampled to “pre-load” 

extra information to assist the simulation. This process is called the RVS data loader and for now 

will require interaction with the RVS team (Matt Reeves and Rob Lankston, contractor). Users 

can do it themselves but they should have some help from a GIS analyst to sample the data and 

could also request the data from the RVS team directly. 

 

Table 1.  The level of user input influences the number of assumptions necessary to conduct a 

simulation. This table applies to any situation except when the invasive species listed in “XYZ 

table” are found. To answer the question of whether or not shrubs or herbs are present or 

expected in the future, the user would indicate either a value of 0% cover (indicating none was 

measured) or a blank value (nothing is entered) for cover indicating the desire to have the 

successional model decide when and if herbs or shrubs should be present.   
User Situation Succession Class Herb 

structure 
Shrub structure Are shrubs 

present or 
expected in 

the near 
future?1 

Are herbs 
present or 

expected in the 
near future2 

User supplies 
nothing  
“Blind 
Simulation” 

Mapped Succession 
Class 

Function of 
estimated 
annual net 

primary 
production 
and relative 
proportion 
of shrubs 

Function of time since 
disturbance and BPS 

(succession stage and BPS 
determine growth rates 

Succession 
models 

describing 
estimated 

species 
assemblages 

(relative 
proportion of 

lifeforms) 

Succession 
models 

describing 
estimated 

species 
assemblages 

(relative 
proportion of 

lifeforms) 

User supplies 
height and 
cover for both 
herbs and 
shrubs3  

If shrub and herb 
structure and 

composition are 
known, the succession 
class can be estimated 

Supplied by 
user 

Supplied by user Known from 
input 

Known from 
input 

User supplies 
height and 
cover for 
herbs only 

If herb structure and 
composition is known, 

the succession class can 
be estimated 

Supplied by 
user 

None estimated in present 
succession stage.  Might 

come into the community 
in a later stage.    

Supplied by 
user 

Known from 
input 

User supplies 
height and 
cover for 
shrubs only 

If shrub structure and 
composition are 

known, the succession 
class can be estimated 

Supplied by 
user 

Supplied by user Known from 
input 

None estimated 
in present 
succession 

stage.  Might 
come into the 

community in a 
later stage.    

1This is part of the plot-level input.  If the user leaves this blank, the RVS will estimate, based on the succession 
models for each BPS whether or not shrubs should be present in future years of the simulation. 2Users should 
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supply an estimate of whether or not herbaceous lifeforms (grasses and forbs) are present or should normally be 
expected at the site. For example, some sights could exhibit shrub cover and height well beyond expected 
conditions (such is the case with many sites exhibiting dense stands of decadent sagebrush. Often these sites 
would have historically exhibited reasonable production of herbaceous species but this may no longer be the case. 
So to assist the RVS in recognizing this condition, the user should consider simply supplying this information in the 
input database and indicate that “herbs are NOT present or expected in the near future”. 3If user-supplied height 
and cover of shrubs exceeds the appropriate structure suggested by each succession model in each BPS, shrubs 
will not be grown in the future.  This generally applies, however, to shrub height but not necessarily cover.  

 

 

In the early stages of the dissemination of the RVS, while use is in its infancy, users may request 

assistance until appropriate server architecture is constructed. The data sampled during the RVS 

data loader process, and their use in the simulation is depicted in Table 2.  

 

Table 2. Geospatial data elements that are sampled to provide guidance for a simulation and to 

provide “backup values” in case a simulation is blind.   
Simulation parameter Usage Source 

Biophysical Settings (BPS) Controls NDVI, Precipitation, and growth 

rates of shrubs and linkages between 

herbaceous cover and biomass.  

LANDFIRE  

(Rollins 2009) 

Succession Class Provides an estimate of where the stand is 

in terms of successional status (early, mid, 

or late). Succession class also controls 

growth rates of shrubs within a given BPS 

(e.g. shrub growth rates are often higher 

earlier stages). Controls species cohorts and 

estimated dominance of lifeforms. For a 

given succession class, up to four species 

are estimated.  This information is reported 

at the lifeform level  

LANDFIRE  

(Rollins 2009) 

Precipitation Controls annual production in concert with 

NDVI and BPS. 

PRISM 

(Daly  et al., 2009) 

Normalized Difference Vegetation Index 

(NDVI) 

Controls annual production in concert with 

precipitation and BPS. 

LANDFIRE  

(Rollins 2009) 

Existing Vegetation Height (EVH) Provides a general estimate of vegetation 

height for a starting point in the simulation 

(only if the simulation is blind).  

LANDFIRE  

(Rollins 2009) 

Existing Vegetation Height (EVC) Provides a general estimate of vegetation 

cover for a starting point in the simulation 

(only if the simulation is blind). 

LANDFIRE  

(Rollins 2009) 

Existing Vegetation Type (EVT) Provides an estimate of the vegetation class 

(Ecological System; Comer  et al., 2003). In 

the RVS, it is used to provide a general 

estimate of the presence of invasive and 

exotic species. The succession class product 

indicates that a particular site may have 

“uncharacteristic” vegetation qualities but it 

does not indicate a likely species 

assemblage and therefore, the EVT is 

needed to further diagnose the situation.   

LANDFIRE  

(Rollins 2009) 

 

Data retrieved by the data loader process is meant to provide a starting point, a suggested set of 

plot characteristics, and the hope is that the user will review the first set of inputs and update 
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them to reflect what is known at the site. In this manner it is very important that a user be aware 

of the sampled BPS underlying the plots available for simulation. This is because, as described in 

detail below, the BPS controls many critical processes during the simulation. In many cases it is 

possible that due to mapping errors, thematic accuracy, plot placement etc., the BPS will not be 

representative of the system desired for simulation. As a result, the original data retrieved should 

be reviewed with a significant amount scrutiny since sampling a set of 30-m2 map products is not 

a substitute for plot inventory. If a user does interact provide details regarding vegetation 

structure and composition the simulation are considered an “informed simulation”. Informed 

simulations are overall better than blind simulations. Either way, the RVS will not care whether 

the simulation is blind or informed and will merely read the plot inventory (either from the data 

loader process or from a user’s field sampled database) regardless of accuracy or origins of the 

dataset. To provide clarity regarding the differences between informed and blind situations the 

potential situations that may be encountered are expanded in Table 1.  

The dominant system flow components described in the remainder of this report are: 

1) Succession 

a. Dealing with invasive species 

2) Growth 

a. Growing Season Index 

b. Annual Production and Biomass 

i. Herbaceous component 

ii. Shrubs 

3) Management Actions 

a. Fire 

b. Herbivory 

4) Fuelbed components 

a. Individual fuelbed components 

b. Fuel classifications 

5) Integration with FVS 

6) Model Output   

7) Next Steps 

 

1.0.1.3 Succession 

 

The first step in understanding the successional status of stand is to understand the age or time 

since disturbance. To determine the approximate age of the stand, cover and height information 

is needed so that a point within the succession class can be chosen to initialize the simulation. 

With the BPS, succession class, cover and height and exotic/invasive information (Table 2) the 

RVS can estimate what point in a succession stage a stand is presently in. One point of potential 

confusion is the sampling of the Existing Vegetation Type (EVT) to inform the succession 

modeling. The only components from the EVT geospatial product used in the RVS modeling 

process are the estimated presence of invasive or exotic species. The reason for this is that each 

succession already has a set of species cohorts and rates of growth so that the EVT information is 

not needed to represent an estimate of relative abundance of various life-forms.  However, the 

succession class product does include two categories to describe uncharacteristic conditions 

owed to exotics or native species including “Uncharacteristic Native” and “Uncharacteristic 

Exotic”.   
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1.0.1.4 Dealing With Invasive Species 

 

The Clementsian viewpoint implied in the BPS succession models has the significant 

shortcoming of linear assumptions of succession and stand growth and inability to describe 

effects of invasive species. Considering the significant area of non-forested lands occupied by 

invasive species such as cheatgrass (Bromus tectorum), some method for estimating the 

successional trajectories and more importantly (for this project) the response of fuelbed 

properties. So, since there are no available models in the BPS concept to deal with the critical 

issue of invasive species, we suggest dealing with them outside of the BPS framework. This 

acknowledgement of the weakness in the BPS modeling framework is what prompted us to 

prototype Ecological Sites (https://esis.sc.egov.usda.gov/) as a backdrop to evaluate vegetation 

dynamics of alternative states in a state-transition simulation modeling system. This is discussed 

in a separate report.  

 

1.0.1.5 Estimating Stand Age 

 

Estimating the approximate age of the stand is one of the most critical aspects in the succession 

sub-routine because it influences growth rates and the general proportion of lifeforms in the 

stand. Consider the data and BPS model in Table 3. Assume the sampled succession class at a 

plot location on the Inter-Mountain Basins Montane Sagebrush Steppe - Mountain Big 

Sagebrush BPS (Table 3) is “Mid” and the estimated shrub cover was 25% while heights were 

estimated at 0.9 meters. Based on the implied growth rates (derived from the succession class 

characteristics; discussed later) the estimated age of the stand is 31 years. Therefore, the growth 

rates of a 31 year old stand will be used to simulate height and cover growth through time.  The 

order of species listings from left to right indicate expected relative abundance in (Table 3).  In 

this case “ARTRV; mountain big sagebrush” is expected to be significantly more abundant than 

“AMAL; serviceberry”.  Serviceberry can often exceed 3 meters but since the heights listed here 

are considered cover weighted heights, the expected height of mountain sage and three-tip sage 

(ARTR4) get greater weighting in the estimated average maximum stand height of 1.5 meters. In 

addition, the canopy cover values represent the characteristics of the dominant vegetation. This is 

done to be consistent with the LANDFIRE succession models the dominance is determined by 

height. Thus, if shrubs are present in any abundance in the assumed species assemblage they will 

be considered to be dominant.  In the example from above, the mid-successional stage is 

dominated by shrubs which are also indicated by the fact that a shrub species is listed first in the 

order of species. The cover and height of herbaceous species is dealt with later in the report.  
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Table 3. The Inter-Mountain Basins Montane Sagebrush Steppe - Mountain Big Sagebrush and 

associated succession class characteristics. The order of species listings from left to right indicate 

expected relative abundance.  In this case “ARTRV; mountain big sagebrush” is expected to be 

significantly more abundant than “AMAL; serviceberry”.  Serviceberry can often exceed 3 

meters but since the heights listed here are considered cover weighted heights, the expected 

height of mountain sage and three-tip sage (ARTR4) get greater weighting in the estimated 

average maximum stand height of 1.5 meters.  

Stage/cohort Start End 
 

Min Max 
 

Min Max 
Species 

1 

Species 

2 

Species 

3 

Species 

4 

 yearsA 
 Canopy 

cover (%)B 

 
height (m)  

   

Early 0 11  0 5  0 0.6 FEID PSSP6 ACNE9 LUSE 

Mid 12 49  10 30  0.6 1.1 CHRYS9 SYOR2 FEID ARTRV 

Late 50 110B  31 80  1.1 1.5 ARTRV ARTR4 SYOR2 AMAL 
A – The maximum age of 110 years in this example simply indicates the endpoint at which the 

woody vegetation at this BPS will cease to grow taller or increase in cover and has therefore 

reached an “equilibrium” with the site.  
B – Each cohort of dominant species within a successional stage is assumed to reach maximum 

stature at the midpoint of time within the class. For example, in the “Early” class in this BPS, 

both cover and height are assumed to reach a maximum by 2.5 (3) years.  

 

Once the height, cover, and age can be estimated, the RVS will simulate the progression of 

succession in a stand according to each BPS model. This is done by allowing cohorts of 

vegetation (Table 3) to “enter” the stand based on time since disturbance.  In this manner, cohort 

number one is gradually replaced by cohort number two and cohort number two is gradually 

replaced by number three etc.  Stand level cover and height is a function of growth rates, time 

since disturbance, and the proportion of each cohort estimated to be present on the landscape.  

Note that when cover and height of a cohort reaches its maximum potential, the height of the 

stand does not decrease appreciably but as a stand average it might be somewhat less since the 

height is a cover weighted average and if short species have significantly greater foliar cover 

than taller species, the stand average will be weighted towards the shorter species (EQ. 1).  

 

EQ. 1  Standavght = ((((Cohort1cov * Cohort1prop) * Cohort1ht) + ((Cohort2cov * Cohort2prop) * 

Cohort2ht)) / 2), 

 

Where Standavght is the cover weighted stand level height estimate, Cohort1cov is the estimated cover 

of cohort 1. Cohort1prop is the estimated proportion of the community that cohort 1 occupies, etc.  

 

1.0.1.6 Growth 

 

1.0.1.6.1 Growing Condition Index 

 

Since the system described here runs on an annual time step, annual growing conditions must be 

specified. To accommodate ecological simulation, the system is designed to accept generalized 
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growing conditions which are effectively combinations of remote sensing inputs and estimates of 

annual precipitation. The user, however, does not need to generate their own classes of annual 

precipitation and remote sensing inputs because this has already been accomplished and 

simplified in a spatially explicit database and made available during the RVS data loader 

process. Users need to request this database. The only decision the user has to make is the kind 

of climate scenario under which effects of management actions will be analyzed. Thus, the 

annual sequence of growing conditions can be dictated by the user or it can be completely 

stochastic.  For example, sometimes managers want to estimate what the effects of inappropriate 

stocking rates occurring under drought like conditions will be. It is important to realize, however, 

that since both the remote sensing and precipitation data are spatially explicit so the growing 

conditions for a region are appropriately constrained to values that have actually been observed 

for a given site. So as the user overlays the X, Y locations within the RVS data loader process 

the appropriate data ranges of vegetation abundance and climate are retrieved. From this range, 

the user must specify the climate scenarios (growing condition index) desire to be evaluated.    

 

The precipitation data used for formulating the growing conditions come from the Parameter-

elevation Relationships on Independent Slopes Model (PRISM) Project (Daly  et al., 2001).  

Data between 1981 and 2014 are used to quantify the range of annual precipitation estimated 

over the coterminous U.S (Fig. 1). In addition to precipitation, the growing condition index also 

involves the commonly used normalized difference vegetation index (NDVI) which is a remotely 

sensed ratio of red and near-infrared electromagnetic radiation.   

 

 

 
Figure 1. Both climate data from PRISM and NDVI data from MODIS are used to describe 

growing conditions and formulate the growing condition index. The index represents the 

following percentiles for both datasets; 0th, 25th, 50th, 75th, 100th
.   

The details of NDVI are not germane to this report but the manager (or user) of the RVS needs to 

understand that the NDVI increases as vegetation abundance (or biomass) increases. The 
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rationale for including the NDVI in the growing conditions index is so that present vegetation 

conditions can be estimated. For example, as demonstrated in Fig. 2, areas within the same 

Biophysical Setting can have significant differences in productivity due to different management 

schemes or other reasons. Thus, by including NDVI in the growing condition index, given the 

same precipitation, the system can “see” the differences across the landscape and estimate 

production and fuels accordingly. 

 
Figure 2. Management schemes can effect vegetation assemblages and structure even if the 

potential productivity is identical. This figure shows demonstrates this point by identifying an 

area where a fence line has created different management strategies and subsequent rangeland 

production. 

The combination of annual precipitation from 1981 to 2014 and vegetation abundance and vigor 

information (NDVI) from 2000 to 2014 to define growing conditions enables spatially explicit 

simulation capabilities constrained by observed conditions. This is an important point for the 

manager to understand. Thus for any given rangeland site in the coterminous U.S., the range of 

observed growing conditions, as expressed by NDVI and precipitation and represented as 5 index 

values is known. In this manner, to supply growing conditions for the simulation the user only 

needs to specify the point locations of the sites being analyzed and the index (3 - average, 5 - 

very poor etc) to represent the expected growing conditions for each year in the simulation (Fig. 

1). This simplified approach to describing climate conditions was developed so that users need 

not know anything about NDVI or what it means but instead only need to indicate the general 

sort of climate conditions desired for the simulation.   

 

1.0.1.6.2 Modeling Herbaceous Annual Production 

 

Herbaceous annual production is estimated in two steps, the first of which uses a statistical 

modeling approach relating NDVI and precipitation and site specific parameters with annual 
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production. The NDVI has long been used to describe both net primary production (An 2009; 

Paruelo  et al., 1997; Paruelo  et al., 1998; Senay and Elliot, 2000; Wang  et al., 2005) and 

biomass (Al-Bakri and Taylor 2003; Kogan  et al., 2004; Reeves  et al., 2001).  Annual 

production is thus estimated as Prodann= (intercept) + (PPT * X1) + (NDVI * X2) + (SiteID 

[coeff.]) + (PPT * SiteID * X3) + (NDVI * SiteID * X4) where Prodann is the estimated annual 

above-ground production, PPT is annual precipitation, NDVI is the annual maximum NDVI at 

the site, SiteID is a unique site specific coefficient for each BPS (e.g. a site representing the 

Intermountain Basins Big Sagebrush BPS, has a different coefficient than a semi-desert 

grassland site). In addition, precipitation has also been used extensively to estimate biomass (Le 

Houérou  et al., 1988 ;Yang  et al., 2008;Polley  et al., 2010; Zhu and Southworth 2013). Models 

using only precipitation, however, will not perform well in areas where differences in 

management schemes produce differing vegetation assemblages and vigor. That is why the 

NDVI is used in concert with precipitation and site specific characteristics to estimate annual 

production. The annual values for precipitation and NDVI are derived from the growing 

conditions index defined above.  The details of how these statistical models were created are 

beyond the scope of this report but the cross validation results are shown in Fig. 3.  

 

 
Figure 3. Cross validation of annual productivity model. The observed values are derived from 

the Soil Survey Geographic Database (SSURGO) dataset. The predicted values are derived from 

the biomass model relying on precipitation, NDVI, and BPS.  

A general description of how the statistical models were built is as follows: 

1) For each BPS compute low production, normal production and high annual 

production values in each Soil Survey Geographic (SSURGO) 

(http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_0

53627) polygon. In the SSURGO database the low, normal and high annual 
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production values for each soil type are usually and represent the production 

“observations”.  

2) For each BPS calculate average annual precipitation and maximum NDVI. 

3) These factors and their interactions form the basis for the statistical model describing 

annual production for each BPS.     

 

The model of annual production, while theoretically representing total site production (shrub 

leaves and herbaceous response), is skewed towards representing the herbaceous response. This 

is because over the decades when field personnel collected clip and weigh annual production 

information in support of SSURGO development, generally speaking, preference was given to 

sites with dominated by herbaceous vegetation given the interest in utilizable livestock forage. 

Therefore, the production models are more reliable in habitats often dominated by herbaceous 

lifeforms, such as grasslands or shrub steppe.  

 

However, the estimated annual production is total aboveground ecosystem production and is 

proportionally allocated to herbaceous lifeforms based upon the relative abundance of herbs 

versus shrubs. The relative abundance of herbs and shrubs is calculated as the proportion of 

cover by herbs or shrubs relative to total vegetation cover. For example, assume cover of 

herbaceous vegetation is 35 percent while cover of shrubs 15 percent cover. As a proportion of 

the total, the herbaceous component occupies 70 percent of the relative abundance (35 / (35 + 

15) * 100). This simplified process is used due to a lack of suitable data describing the 

relationship between shrubs and herbs and annual production across diverse communities. The 

dominant assumption implied in this procedure is that there is a linear relationship between the 

relative abundance of herbs with estimated annual production. 

 

1.0.1.6.3 Modeling Woody Annual Production 

 

Modeling woody annual production requires estimates of growth rates which, in turn, depend on 

the succession class and BPS.  Presently allometric equations are available for 39 shrub species. 

These equations were obtained from the H.J. Andrews Experimental Forest 

(http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TP072&topnav=97). Though 

many equations have been formulated, the pool of possible allometric equations (Means et al., 

1994) here (Table 4) is limited to those requiring only height and cover. For example, many 

shrub allometric equations linking stem attributes to other traits such as above ground biomass 

require parameters such as diameter at root collar (DRC) or number of stems (if the species 

typically manifests as multiple stems such as greasewood (Sarcobatus vermiculatus). If a species 

is recorded in the supplied plot inventory but is not represented by an equation in Table 4 then a 

crosswalk to a known species must be performed by the user. For example, presently there is no 

equation representing creosote bush (Larrea tridentata) so a crosswalk to another species’ 

equation must be made for creosote bush. To accommodate this selection process, the RVS has 

an option whereby each shrub in each plot record is processed using every biomass equation 

available for the desired trait to calculate (e.g. above ground biomass) (Table 5).  

 

 

 

 

http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TP072&topnav=97
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Table 4. List of species and dependent variables for which allometric equations are available in 

the system.  
 

Species Allometric result 

Alnus sinuata Total foliage biomass 

Amelanchier alnifolia Total foliage biomass 

Arctostaphylos columbiana Total aboveground biomass 
Arctostaphylos patula Total aboveground biomass 

Artemisia tridentata Projected area, crown, horizontal surface 

Ceanothus cordulatus Total aboveground biomass 
Ceanothus sanguineus Total aboveground biomass 

Ceanothus velutinus Total aboveground biomass 

Chimaphila umbellata Total aboveground biomass 
Chrysothamnus nauseosus Total aboveground biomass 

Cornus stolonifera Total foliage biomass 

Holodiscus discolor Total foliage biomass 
Juniperus communis Total foliage biomass 

Lonicera utahensis Total foliage biomass 

Pachistima myrsinites Total aboveground biomass 

Philadelphus lewisii Total foliage biomass 

Physocarpus malvaceus Total foliage biomass 

Prunus virginiana Total foliage biomass 
Purshia tridentata Total aboveground biomass 

Quercus kelloggii Total aboveground biomass 

Rhododendron macrophyllum Total aboveground biomass 
Ribes spp. Total foliage biomass 

Rosa spp. Total aboveground biomass 

Rubus idaeus Total foliage biomass 
Rubus leucodermis Total aboveground biomass 

Rubus parviflorus Total aboveground biomass 

Rubus ursinus Total aboveground biomass 
Salix spp. Total foliage biomass 

Sambucus cerulea Total aboveground biomass 
Sheperdia canadensis Total foliage biomass 

Sorbus scopulina Total foliage biomass 

Spirea betulifolia Total foliage biomass 
Symphoricarpos albus Total aboveground biomass 

Symphoricarpos albus Total foliage biomass 

Vaccinium globulare Total foliage biomass 
Vaccinium scoparium Total aboveground biomass 

 

Table 5. The RVS offers the ability to process every plot with every biomass equation so the 

user can see the different results of estimated per stem biomass for shrubs. Each number is a 

different equation and the units are pounds per acre.  The mean and standard deviation yield 

information about the uncertainty surrounding each biomass calculation.  Users can elect this 

function to process all of their plot data to understand spatial variability in fuels.  
Plots 165 166 167 168 201 202 620 622 623 624 626 627 628 629 630 631 Mean STD 

EOSG 02 2 2 3.5 4 4 3.5 3 3.5 4 3.5 3 3 4 3 3.29 0.67 3.3 0.7 
EOSG 04 2.5 1.5 3 2 5 1.5 1 3.5 1 1.5 2 5 4.5 4.5 2.75 1.49 2.8 1.5 
EOSG 05 2 3.5 3 4 3 2 1 4.5 4 4 1.5 4 1 3.5 2.93 1.21 2.9 1.2 
EOSG 06 1.5 3 3 3 4.5 5 5 5 1.5 4.5 2 1 2.5 1 3.04 1.52 3 1.5 
EOSG 07 2 4.5 5 2 2 3.5 2.5 5 1.5 2.5 1.5 4 2 4 3 1.29 3 1.3 
EOSG 09 1.5 3 3.5 4 4 5 4.5 5 3 2.5 2.5 4.5 3.5 3 3.54 1.03 3.5 1 
EOSG 10 2 2.5 4.5 2 3 3 4.5 1 1.5 2.5 2 5 1.5 1 2.57 1.3 2.6 1.3 
EOSG 11 5 2 3.5 5 3 3.5 4 4 4.5 5 3.5 3.5 2 4.5 3.79 0.99 3.8 1 
EOSG 12 6 14 13.5 8.5 5.5 5.5 10.5 8.5 6 8 15 12 5.5 7 8.96 3.43 9 3.4 
EOSJ 01 5 15 8 7.5 13 5.5 7 15 5.5 10.5 15 6 8 13.5 9.61 3.91 9.6 3.9 
EOSJ 02 13.5 10 11 7.5 7.5 9 12 8.5 13.5 11.5 9 12.5 14 7.5 10.5 2.38 10.5 2.4 
EOSJ 03 11.5 7 14 10.5 9.5 12 13 12.5 6.5 15 11.5 6.5 10 9 10.61 2.7 10.6 2.7 
EOSP 01 10 12 7 12.5 5 8.5 13.5 15 15 9.5 13.5 5 12 15 10.96 3.53 11 3.5 
EOSP 02 8.5 14 13 6.5 7.5 6 5.5 11 14 5 7.5 10.5 14 12.5 9.68 3.41 9.7 3.4 
EOSP 03 7.5 15 7.5 7 13.5 15 7.5 6.5 7 8 7 6 8 5 8.61 3.31 8.6 3.3 
EOSP 04 6.5 11.5 14 7.5 6.5 11 7.5 9.5 6.5 7.5 6 5 6 10.5 8.25 2.62 8.3 2.6 
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As indicated in Table 5, a distribution of estimated per stem biomass values can be generated for 

each shrub record in the input database. Once the plot level inventory of structure and 

composition is known, the annual production of shrubs is estimated using the following steps.  

1) Calculate the inter-annual growth rates of shrubs  

2) For each year in the simulation estimate the incremental change in stature as changes 

in cover and height.  

3) Apply stand level allometric equations describing biomass of shrubs for each year of 

the simulation.  

4) Changes in estimated biomass are subsequently used to represent annual production 

of shrubs in a year. These estimates, however, do not include an accounting for 

“annual increment” of woody stems. 

5) Expand estimates of “per stem” annual growth to an area (acre) basis  

 

1.0.1.6.3.1 Step 1 - Shrub Growth Rates 

 

Stand level shrub growth rates are modeled as a potential growth rate (controlled by site and 

successional stage) which is attenuated by the climate index discussed above. Growth rates, 

however, can increase or decrease based on growth conditions, depending on the site. The sites 

referred to here are, again, determined by the BPS estimated at each plot. This is a very critical 

point for users of RVS to understand. If a site is coded with an incorrect BPS, the simulation will 

be very unreliable because the BPS controls growth rates.   

 

An example of how this is computed is found in Table 6. As can be seen in Table 6, if an 

incorrect BPS is chosen for a plot then shrubs will grow too fast or too slow. Likewise, 

transitions between succession classes will be too fast or too slow so a user must do everything 

they can to ensure that the correct BPS is chosen.  

 

Table 6. Example of how growth rates for shrubs are calculated for a Biophysical Setting (BPS).  

This Biophysical Setting is the Inter-Mountain Basins Montane Sagebrush Steppe - Mountain 

Big Sagebrush.  These growth rates only represent shrubs in the system.   

Stage Start End 
 

Min Max 
 

Min Max 
Height growth 

rate (m yr-1) 

Cover growth rate 

(% yr-1) 

 yearsA  canopy cover (%)B  height (m)   

Early 0 11  0 5  0 0.6 0.2 0.83 

Mid 12 49  10 30  0.6 3.1 0.160 1.58 

Late 50 110B  31 80  0.6 10 0.167 1.33 

A – The maximum age of 110 years in this example simply indicates the endpoint at which the woody vegetation at 

this BPS will cease to grow taller or with greater cover and has therefore reached an “equilibrium” with the site.  
B – Each cohort of dominant species within a successional stage is assumed to reach maximum stature at the 

midpoint of time within the class. For example, in the Early class in this BPS, both cover and height are assumed to 

reach a maximum by 2.5 (3 ) years.  

 

A good rule of thumb is that if a user cannot determine the BPS, then a series of BPS’s should be 

evaluated for that site to determine whether or not the growth rates seem correct. The BPS 

product has been structured to reflect the fact that much of the pre-Euro American vegetation has 

been converted to various land uses such as agriculture and residential land Fig. 4.  There are 112 

BPS types for which growth rates and ecological succession (albeit crudely) can be simulated, of 
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which, 21 are never dominated by shrubs in any succession stage (according to the LANDFIRE 

BPS succession models) and are therefore represented by herbaceous or succulent species.  

 

 
Figure 4. The spatial extent of Biophysical Settings (areas that are now converted to alternate 

land cover or land use classes, such as agriculture, are represented as a white color) that can be 

potentially evaluated in the system discussed in this report combining the Rangeland Vegetation 

Simulator and the ST-SIM program. 

The spatial arrangement of the 112 BPS’s available in the system is presented in Fig. 4.  Table 6 

provides an example of how growth rates are generally estimated using the succession models in 

the LANDFIRE database. There are details omitted on this topic because it is beyond the scope 

of this report but the table gives a general idea of shrub growth rates implied in the system. The 

growth rate estimates derived from this process represent a kind of potential growth rate. 

1.0.1.6.3.2 Steps 2 and 3 and 4: Estimate Incremental Change, Biomass, and Annual Production 

For each year in the simulation, the annual change in cover and height is estimated using the 

growth rate which is attenuated by the growing conditions. After estimating the growth of 

shrubs, allometric relationships are applied so that a new estimate of incremental above ground 

biomass is produced.  An example allometric relationship of Artemisia tridentata (big sagebrush) 

and Arctostaphylous patula (greenleaf manzanita) to canopy dimensions is shown in Fig. 5.  An 

equation from (Frandsen 1983) was used in this example for the sagebrush while one from (Ross 

and Walstad 1986)  was used in the greenleaf manzanita example. By subtracting the previous 

year’s biomass from the present, an estimate of production (above ground production) can be 

generated (EQ. 2).   
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Figure 5. Relationships between shrub physiognomic characteristics and above ground biomass 

for Artemisia tridentata (big sagebrush) and Arctostaphylos patula (greenleaf manzanita). The 

equations used to produce the above ground biomass for sagebrush and greenleaf manzanita are 

BAT = 201.4062 + 1.162 * VOL and BAT = exp(-7.3531 + 2.6925 * ln(LEN+WID), 

respectively where BAT is total above ground biomass, VOL is canopy volume, LEN is the 

length of the canopy measured perpendicularly do the width (WID). 

EQ 2. Shrubannprod = ShrubbioT - ShrubbioT-1  

 

where Shrubannprod is the estimated annual production of shrubs, ShrubbioT-1 is the estimated 

shrub biomass at 1 year prior and ShrubbioT is the estimated shrub biomass in the present year. 

 

1.0.1.6.3.3 Steps 5 – Expand estimates of “per stem” annual growth to an area (acre) basis  

 

All biomass, production and fuel data are first generated on a per stem, per species basis. To 

scale these estimates to an area an expansion factor is needed. Therefore, an estimate of stems 

per acre is needed.  For each plot, for each shrub species encountered in the plot database, the 

stems per acre is calculated in three steps 

1) Compute the projected crown area on a horizontal surface  
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2) Quantify the number of times this area can be divided into an acre 

3) Scale the value from point 2 above by the absolute canopy cover that each 

species represents in the stand.  

The projected crown area (PCH) is estimated using the following equation: 

 

EQ. 3. log10 (PCH) = -0.8471 + 2.2953*log10(HT),  

 

where PCH is the projected horizontal crown area in cm2 and HT is the height of each shrub in 

cm (Fig. 6).  In the example given in Fig. 6, the shrub species given is 1 meter tall occupying 

20% canopy cover (Fig. 7). With these dimensions the estimated stems per acre is 1,461. Assume 

that the per stem total aboveground biomass estimate per stem is 6 lbs (dry weight basis). This 

would be tantamount to 6 lbs per stem * 1461 stems per acre = 8,766 lbs ac-1.     

 

 
Figure 6.  First step in calculating stems per acre is to claculate the projected crown surface area 

(in this case in2). In this example, the cm have been converted to inches. 
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Figure 7.  Scaling potential stems per acre by the canopy cover estimate for each shrub species 

in a plot data list. In this instance, the shrubs were estimated at near 1 meter tall. This results in 

859 in2 (5.96 ft2) of projected crown area.  If this species was estimated at 100% canopy cover 

the number of stems per acre would be 43,560 ft2 (the numebr of square feet per acre) / 5.96 ft2 

= 7,305. However, as canopy cover is reduced, the number of stems per acre is reduced 

commensurately.   For example, at 20% canopy cover the shrub which is 1 m tall in the example 

would yield an estimated stems per acre at 1461. This was calculated by taking the total possible 

stems per acre at 100% canopy cover and reducing it by 80% because the estmate canopy cover. 

Therefore 7,305 * 0.2 = 1,461.  

1.0.1.7 Linking Herbaceous Canopy Cover and Height with Biomass 

 

At this stage in the modeling process, production estimates have been derived for both the 

herbaceous and shrub components of the site being analyzed. In addition, shrub cover is known 

given the growth rates for each BPS and the inventory data supplied in the initiation of the 

simulation. However, an estimate of herbaceous cover and height is still needed to sufficiently 

describe fuelbed properties for each year in the simulation. The LANDFIRE BPS succession 

models do provide estimates of herbaceous growth, and we decided to use a combination of 

methods for estimating cover and height of the herbaceous components of each vegetation type. 

The reason for this is that the annual production of herbs is more variable than that of shrubs so 

an explicit linkage between canopy cover (foliar cover not basal) and height and biomass is 

needed.  

 

Linkages between canopy cover or height and herbaceous biomass have not been established 

across the breadth of non-forested ecosystems available for simulation in the system. In addition, 

data describing these relationships often only apply to individual sites or are recorded on very 

small experimental areas rendering them less reliable across sites. Recent work demonstrates, 

however, that linear relationships between canopy cover and biomass within a given system are 

reasonable to expect (Röttgermann et al., 2000) but in areas of high biomass actual predictions of 
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biomass from remotely sensed data (such as the NDVI reported here) are more difficult due to 

the well-known “saturation” feature (Tian et al., 2015). Fig. 8 clearly shows the saturation 

feature which, in this dataset, begins to occur at about 2,500 lbs ac-1 of annual production. 

Recognizing the 1) lack of suitable published data describing cover/height and biomass relations; 

2) the overall linearity of the relationship within a single system (i.e. within a single vegetation 

type such as shortgrass steppe, the relationship between canopy cover and biomass is more or 

less linear), we used linear functions within each BPS to quantify the relationship between 

biomass, canopy cover and vegetation height.   

 

 
Figure 8. The NDVI demonstrates a saturation feature whereby increases in biomass do not 

produce commensurate increases in NDVI. This threshold appears to be 2,500 lbs ac-1, and 

therefore, the relationship between NDVI and production is relatively linear from 0 to  2,500 lbs 

ac-1.   

For each of the 112 BPS types available in the system we quantified the maximum, minimum 

and mean expected production by applying the statistical model to estimate annual production 

described above. The low values represented in Table 7 represent a mean “low” predicted 

biomass value across many sites represented by a given BPS. To illustrate, review the spatial 

distribution of BPS units. Each color represents a single BPS across the landscape. Obviously, 

within such broad geographic ranges, high variability in NDVI, precipitation and therefore 

annual production is observed. As a result, the values present in Table 7 represent averages 

across the spatial extent of each BPS and production class (low, average, high).  The production 

values do not suggest upper or lower limits for a given site, but instead represent the generally 

expected ranges of production. It is against these values of production that expected ranges of 

canopy cover and vegetation height are regressed. The canopy cover and height “observations” 

used for this purpose are retrieved from each BPS succession model. This is meant to yield a 

general idea of the usual range of canopy cover and height for each BPS. 
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Table 7. Estimated relationships between annual production and canopy cover and stand height.  

The slope and intercept represent the relationship where annual productivity is the independent 

variable. Only 7 Biophysical Settings (BPS) out of 112 possible are depicted here.   
BPS Annual 

Production (lbs ac-1) 

 Foliar canopy cover  

(%) 

  Canopy 

height 
(m) 

 Canopy 

cover 
slope 

Canopy  

height 
slope 

 Low Average High  9 19 29  0.1 0.56 1.01 0.023 0.0003 

Apacherian-

Chihuahuan Semi-
Desert Grassland 

and Steppe 

500 828 1218  

21 43 64 

 

0.19 0.69 1.2 0.024 0.0002 

Central 
Mixedgrass Prairie 

1912 2623 3346  
24 46 67 

 
0.27 1 1.73 0.019 0.0002 

Central Tallgrass 

Prairie 

3718 4715 5559  

6 24 41 

 

0.19 1.3 2.42 0.0297 0.0006 
Inter-Mountain 

Basins Big 

Sagebrush 

Shrubland 

692 1065 1511  

10 21 32 

 

0.2 0.9 1.6 0.0208 0.0005 

Inter-Mountain 

Basins Big 
Sagebrush Steppe 

652 1022 1457  

51 76 100 

 

0.1 1.6 3.1 0.0211 0.0001 

South Texas 

Lomas 

2699 3620 4519  

6 24 42 

 

0.1 0.3 0.5 0.0222 0.0002 
Wyoming Basins 

Dwarf Sagebrush 
Shrubland and 

Steppe 

750 1143 1603  

9 19 29 

 

0.1 0.56 1.01 0.0233 0.0003 

 

For each BPS the regressions are forced through zero so that if an estimate of 0 pounds per acre 

of annual production is found, the estimate of canopy cover will also be 0.  

 

In each BPS succession model there are a series of stages (for non-forested systems there are 

usually 3; early, mid and late).  In each successional stage there are ranges of height and cover of 

dominant life forms estimated.  Thus, as depicted in Table 7 the slope resulting from linear 

regression of annual production upon cover and height can be estimated. We recognize that 

relating canopy cover and height to biomass across multiple vegetation communities is generally 

unsupported in the literature. This is good because we hope that skeptics may also be able to 

offer robust field data that can improve the relationships we established between biomass and 

cover and height. Further we recognize that within a given functional group or lifeform there can 

be extensive morphological differences which will skew the relations between biomass and cover 

and height (Mitchell  et al., 1987). The values do not represent upper and lower thresholds of 

cover and height but, like the estimated production values, represent normally expected values 

for lower, average and upper cover and height condition. Finally, it is also important to 

remember that there is usually no significant difference in modeled fire behavior or fuel loads 

between herbaceous cover of 25% and 35%. So again, the efficacy must we weighed against the 

accuracy.  

 

 

1.0.1.8 Management Actions 

 

Two management actions are available during simulation including herbivory and fire. Initially, 

herbicide application was considered as a management action but, due to a surprising lack of data 

or (information) describing topkill effects and ecosystem response to herbicide application 

(either broadleaf types or glyphosate), these effects are not simulated.  
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There are two aspects of modeled management actions that are important for the user to 

understand.  The first aspect is the effect on the successional dynamics. For example, fire will 

usually kill most big sagebrush species and potentially create a new successional pathway and 

change states in coming years.  The second aspect is the effects of management actions on 

productivity, standing biomass, and fuelbed parameters.  Using the previous example, if fire 

consumes big sagebrush individuals, 1, 10 and 100, and 1000 – hr time lag fuels from shrubs are 

reduced or removed from the site and potentially there may be an increase in 1 – hr fuels from 

herbaceous species in response to competition release. Since the effects of management actions 

on successional dynamics (i.e. how vegetation composition responds to management) vary 

considerably here they are generally described but the effects on biomass and fuelbed parameters 

are explained in more detail. 

 

1.0.1.8.1 Fire 

 

Presently it is assumed that fire will reduce 1, 10, 100 and 1000 (if present) – hr time lag fuels 

proportional to the amount of shrubs reduced across the landscape. The amount of shrub kill after 

a fire is quite variable in practice and depends on many factors and is therefore beyond the scope 

of the system to provide that information automatically.  As a result, the estimated effects of fire 

should be calibrated by users depending on the vegetation in question. The system does, 

however, provide a default starting point such that non-sprouting shrubs will be “killed off” or 

removed from the stand (Fig. 9). In contrast, sprouting species are consumed but re-

establishment and growth is simulated more quickly depending on the system. The assumptions 

present in these subroutines are that: 

1) Each species is either a sprouter or non-sprouter 

2) If they are sprouters, every individual in the stand will recover 

 
Figure 9. Example of how a fire will reset succession based on the BPS being modeled.  This, in 

some cases is not a good view of ecology but it’s the limitaion of the BpS system. For describing 

successional development and trajectories.   
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Like other assumptions implicit in this system, these are overly simplistic because some shrubs 

like Purshia tridentata (antelope bitterbrush) will sometimes resprout following fire but not 

always.  For example, it is often killed by summer or fall fire (Blaisdale 1950;  et al., 1992), but 

may sprout after light intensity spring fires (Agee 1994; Blaisdell and Mueggler 1956) but not 

after multiple fires (Shaw and Monsen 1983) The general effect of fire in the RVS is to reduce 

fuels (fuel consumption) and to reset successional status.  

 

1.0.1.8.2 Herbivory 

 

In a similar manner to fire, effects of herbivory differ greatly between sites. To simulate the 

effects of herbivory on stand components the user needs only to supply stocking rate information 

(how many animals, how long are they present and how big is the landscape being simulated) in 

addition to the type of herbivore in the simulation.  

 

The reduction in biomass and fuels resulting from herbivory are based on the empirical 

observation that ruminants generally require roughly 2.6% of their body weight of daily intake of 

dry matter.  For example, a 1000 pound cow will require roughly 26 pounds of dry matter intake 

per day.  If this animal is present on the site being simulated for 1 month this is tantamount to 

780 (26 pounds times 30 days) pounds of dry matter (an animal unit month; AUM).  Many 

factors influence the actual amount of dry matter intake including age, breed, forage quality, 

supplements, water availability, metabolic state, etc. In an effort to simplify the situation, 

however, the assumption of 2.6% of body weight is used.  In addition to stocking rate 

information, the type of animal must be supplied as well.  This is necessary because different 

classes of livestock generally prefer different types of forage.   

 

In the system described here, grazers and intermediate classes of livestock are available for 

simulation. Grazers prefer and consume herbaceous stand components (especially grasses) while 

intermediate species such as goats will consume browse at nearly an equal rate to grasses but 

usually only smaller size classes of browse (woody material) such as 1, and 10 – hr time lag 

fuels. The various species of herbivores and the AUM adjustments for body size are shown in 

Table 8.  

 
Table 8.  Average weights of herbivores and conversion factors for estimating daily forage intake.   

Animal 

 

Average 

weight (lbs) 

AUM 

Conversion 

Herbivore 

Class1 

Cow 1,000 1 Grazer 

Horse 1,100 0.9 Grazer 

Elk 600 1.5 Grazer 

Mule Deer 125 4.5 Intermediate 

Sheep 120 5 Grazer 

Goat 120 5 Intermediate 

Pronghorn Antelope  90 6 Intermediate 

1These classes are assigned for the present decision support system described in this report. In reality, the 

classification may not be this simplistic with only two classes.   

 

As an example, 1 cow is roughly equal to 5 sheep in terms of body weight and expected daily 

intake requirement. So if 1 sheep is present the calculation of daily forage intake is 26 pounds 
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*1/5 = 5.2 pounds of dry matter intake per day. In addition to conversion assumptions, the 

general class of livestock is also shown. This is a difficult and incorrect (albeit necessary) 

assumption because any class of livestock can switch preferences based on many factors 

including availability and familiarity.  For example, in some situations cows will consume 

browse such as sagebrush (Peterson et al., 2014; Ngugi et al., 2014; Veblen et al., 2015) if they 

are trained. Using these assumptions and this information, biomass and therefore fuels, are 

reduced proportionally to stocking rate and duration and herbivore type (Fig. 10). In Fig. 10, the 

simulated effect of 5 goats for 30 days on various fuel size classes is demonstrated.   

 

 
Figure 10. Estimated reduction in biomass, and therefore fuels, in response to herbivory. The 

shaded colors and text including GS2, GS1, SH1 represent surface Fire Behavior Fuel Models 

(Scott and Burgan 2005) and, in this order, depict the linear depletion of 1-hr fuel from the stand 

based on the standardized estimate for forage requirements of a cow represented by the Animal 

Unit Month (780 lbs of dry matter per month).    

These reductions are possible only with one, sometimes incorrect, but necessary assumption.  

The dominant assumption is that no regrowth occurs after herbivory since the RVS operates on 

an annual timestep and biomass represents peak greeness. This assumption would be more 

correct if the herbivory occurs after the peak of the growing season and if the region does not 

experience a bi-modal growing season.  

 

1.0.1.9 Fuelbed Components 

 

1.0.1.9.1 Individual Components 

 

For each year in the simulation, fuels are estimated for every stand. Estimating fuelbed 

parameters occurs in three steps.  First, the present year’s herbaceous production is added to 
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estimated standing dead herbaceous vegetation resulting from previous growth. Estimating the 

previous year’s standing dead or herbaceous litter material is not based upon experimental 

observation for a couple of reasons.  This topic is not widely studied across multiple ecosystems 

and it is difficult and time consuming to derive experiments that track the fate of herbaceous 

growth, senescence and decomposition across multiple vegetation types. The paucity of suitable 

plot data for estimating the amount of standing dead material is therefore based on the authors 

guess and casual observations of various vegetation stands with significant herbaceous 

components throughout the western United States. Our colleagues at the Agricultural Research 

Service (ARS) recently gave us results from 10 years of grassland observations on Shortgrass 

steppe near Cheyenne, Wyoming and standing dead values averaged 22% across grazing 

treatments.  This means that, on average, in shortgrass steppe, standing crop of the present year 

includes 22% of the previous year’s production plus the present annual production. The function 

used in the RVS, to estimate the standing dead material is shown in Fig. 11 In this function, on 

average, the first year value for standing dead remaining is about 30%.  

 

 
Figure 11. The postulated effect of time on the amount of dead grass in a stand estimated at 

Standing dead = 85.194e-0.969x, where X is number of years past since present day. This 

relationship is a guess based on personal observations by the author because, to our knowledge, 

relationships like this have not been quantified by other researchers in a suitable fashion.  

To illustrate consider a site producing 1000 lbs ac-1 of herbaceous production per year for the 

present year and the last 3.  This is tantamount to approximately 1,330 lbs ac-1 of total phytomass 

at the peak of the present years growing season based on Fig.11.  This is important because the 

herbaceous portion is assumed to be comprised of 1-hr time lag fuel size class (0 to ¼ in. 

diameter), so accounting for the herbaceous components in the stand is important for 

characterizing fire effects and behavior.  

 

The second step in estimating fuel bed parameters involves accounting for woody fuels including 

the annual production of shrubs. The size classes of 1, 10, and 100 hour time lag fuels 
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correspond to diameters of 0-¼", ¼"-1", 1"-3" respectively and are estimated using allometric 

relationships in much the same way that biomass and production are estimated for shrubs (Fig. 

12). The general idea for this process emanated from (Means et al., 1996) and the library of 

allometric equations were received from obtained from the H.J. Andrews Experimental Forest  

(http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TP072&topnav=97). 

 

 
Figure 12. Example allometric equations for estimating 1-hr time lag fuel for wood and bark and 

total foliage fuel for big sagebrush.  These equations for big sagebrush are FWB = 2.932237 + 

0.353554 * BIO and ln(BFT) = -1.498408 + 0.955207 * ln(BAT) where FWB is the estimated 

fuel from wood and bark, BAT is total aboveground biomass, and BFT is the total 1-hr fuel in 

the shrub canopy from foliage. 

http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TP072&topnav=97
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Data were provided by the HJ Andrews Experimental Forest research program, funded by the 

National Science Foundation's Long-Term Ecological Research Program (DEB 1440409), U.S. 

Forest Service Pacific Northwest Research Station, and Oregon State University. One of the 

principle differences between estimating fuel size classes versus estimating biomass of shrub is 

that inputs to biomass are generally limited to parameters associated with canopy cover and 

height while many fuel equations use, as their primary input, total above ground biomass which 

is itself estimated from allometric relations.  There are 27 species represented in the system but 

for each species there are multiple equations for various fuel parameters (Table 9).   

 

Table 9.  List of all species and associated fuel parameters available in the RVS. 

Species 
 

 

Total foliage 

biomass 

 Dead crown 
 

 

 Dead wood & 
bark 

 Live Crown 
 

 

 TFB  1hr 10hr  100hr   1hr 10hr  100hr   1hr 10hr  100hr  1000hr 
Acer glabrum X  

   

 X X X  

    Alnus sinuata X  

   

 X X X  

    Amelanchier alnifolia X  
   

 X X X  
    Arctostaphylos patula X  X X X  X X X  X X X X 

Artemisia tridentata X  X X X  X X X  X X X 

 Berberis repens X  
   

 X 
  

 
    Ceanothus velutinus X  X X 

 

 X X 

 

 X X 

  Cornus stolonifera X  

   

 X X 

 

 

    Holodiscus discolor X  
   

 X X 
 

 
    Juniperus communis X  

   

 X X 

 

 

    Lonicera utahensis X  

   

 X X 

 

 

    Menziensia ferruginea X  
   

 X X 
 

 
    Philadelphus lewisii X  

   

 X X 

 

 

    Physocarpus malvaceus X  

   

 X X 

 

 

    Prunus virginiana X  
   

 X X 
 

 
    Purshia tridentata X  X X X  X X X  X X X 

 Ribes spp. X  

   

 X X 

 

 

    Rosa spp. X  

   

 X X 

 

 

    Rubus idaeus X  

   

 X X 

 

 

    Rubus parviflorus X  

   

 X X 

 

 

    Salix spp. X  
   

 X X X  
    Shepherdia canadensis X  

   

 X X 

 

 

    Sorbus scopulina X  

   

 X X X  

    Spirea betulifolia X  
   

 X 
  

 
    Symphoricarpos albus X  

   

 X X 

 

 

    Vaccinium globulare X  

   

 X X 

 

 

    Vaccinium scoparium X  
   

 X 
  

 
     

There are potentially 11 fuel parameters to estimate using the allometric equations in the system 

(Table 9). The system reported here makes estimates of 1, 10, and 100-hr, and to a lesser degree 

1000-hr, fuel components on shrubs using the equation types listed in Table 9 and incrementally 

accounts for shrubs in wood and bark and foliage alike.   

 

1.0.1.9.2 Fuel Classifications 

 

The third and final step in estimating fuelbed parameters is to use composition, structure, 

biomass, and fuel size class loadings to classify a plot at a given point in time during the 

simulation into surface Fire Behavior Fuel Models (FBFM) (Anderson 1982; Scott and Burgan 

2005), Fuel Loading Models (FLMs) (Sikkink and Keane 2009).  In addition, many of the 

attributes produced using the RVS can be used to develop new fuelbeds in the Fuel 

Characteristic Classification System (FCCS) fuelbeds (Ottmar et al., 2007). Surface FBFM’s are 
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classified based on rulesets that account for the above mentioned site and fuel characteristics. An 

example rule set is shown in Table 10. The actual classification process is somewhat more 

detailed than suggested by Table 10.  

 

Table 10.  Example rulesets between site conditions, fuel parameters and surface Fire Behavior 

Fuel Models (FBFM). Note that multiple fuel models are possible within the ranges of stand 

attributes depending on what values each attribute exhibits.   

Biophysical Settings 
 

Herb 

Ht  
(ft) 

Herb 

Cover  
(%) 

Shrub 

Ht  
(ft) 

Shrub 

Cover 
 (%) 

Live 

Herb 
 (lbs ac) 

FBFM 

40 
 

FBFM 

13 
 

Intermountain Basins Big Sagebrush Steppe 

0 to 

1 0 to 20 0 to 2 0 to 20 0 to 800 

GR1/SH1/

GS1 1 

Intermountain Basins Big Sagebrush Steppe 
 2 to 

4 20 to 60 2 to 5 20 to 60 
800 to 
1500 GS2/GR2 2/6 

Intermountain Basins Big Sagebrush Steppe > 4 

60 to 

100 > 5 60 to 100 > 1500 GS2/SH5 2/5/6/  

Western Great Plains Shortgrass Prairie 

0 to 

1 0 to 20 0 to 2 0 to 20 

0 to 

1000 GR1 1/8 

Western Great Plains Shortgrass Prairie 
 2 to 

3 20 to 60 2 to 5 20 to 60 
1000 to 

2000 GR2 2/5/6/  

Western Great Plains Shortgrass Prairie > 3 

60 to 

100 > 5 > 60 > 2000 

GR2/GR4

/SH5 2/3/6/  

 

Note that several fuel models can be possible within a given range of stand attributes (Table 10). 

Rules is meant to give the reader a general understanding of how the process is conducted. For 

example, in the Western Great Plains Shortgrass Prairie BPS, if herb heights are about 2 - 3 feet 

but cover is 60% and production is 2,000 lbs ac-1, then a GR2 (Scott and Burgan 2005) may be 

appropriate, but if herb cover is 80% and production greater than 3,800 lbs ac-1, a GR4 may be 

more useful for describing potential fire behavior. Similar rulesets are in place for the FLM 

(Table 11). This suite of fuel classification information enables fire behavior and fire effects in 

non-forested systems.  

 

Table 11. Fuel Loading model (FLM) classification from Lutes et al (2011). Most stands users 

will encounter would be classified as an FLM014 (< 12 T ac-1).  

    Total Plot Load 

Effects 

Group 

System Lower limit 

(>) 

Upper limit 

(<=) 

    ------- kg m-2 (T ac-1) ------ 

FLM014 Sagebrush 0.0 (0.0) 2.7 (12.0) 

FLM053 Sagebrush 2.7 (12.0) 6.2 (27.5) 

FLM065 Sagebrush 6.2 (27.5) 13.0 (58.0) 

FLM015 Chaparral and herbaceous 0.0 (0.0) 4.3 (19.0) 

FLM054 Chaparral and herbaceous 4.3 (19.0) 9.9 (44.0) 

FLM066 Chaparral and herbaceous 9.9 (44.0) 20.6 (92.0) 

 

1.0.1.10 Dealing With Trees  

The RVS will not simulate vegetation succession on all sites (BPS’s).  Generally speaking, there 

are 3 possibilities for any given plot in the input database and ensuing simulations. To determine 
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which of these types a given plot belongs to, the RVS reads the list of input plots prior to any 

simulation.  After reading the BPS, the RVS will determine what to do next, based on the type of 

BPS present (Appendix 1).  

These situations are described below: 

1) All processes (succession, growth, biomass, and disturbance) can be simulated “as-is”. 

This situation reflects vegetation types where tree species are not part of the BPS 

successional modeling framework.  Types such as Intermountain Basins Big Sagebrush, 

and Northern Great Plains Mixed-grass Prairie are examples of this type.  

2) No processes will be simulated, including fuel load estimates at time 0 (processing input 

data and estimating fuel loads without modeling succession.  These include all riparian 

types (found in Appendix 1), missing BPS values or BPS values that are not understood 

(e.g. due to spelling error in the input table).  

3) Succession will be modeled up until the midpoint of the last successional stage prior to 

trees being introduced into the stand.  For example, consider Fig. 13. The Stage 3 cohort 

is modeled to begin being introduced into the stand by the midpoint of Stage 2 (peak 

structure and dominance of those species in stage 2).  After this time in the simulation, 

succession will cease and the simulation will be completely unreliable.  Likewise, if there 

are tree species listed in the input table (from an informed simulation), this will classified 

as past the midpoint of Stage 2 (the beginning of Stage 3). After this time in the 

simulation, succession will cease and the simulation will be completely unreliable.   

4) Fuels will be quantified for Time 0 (the time of inventory), but no succession is modeled. 

Consider a plot dominated by trees presently, with an understory of shrubs and grasses 

(broken out by composition, cover, and height). If the user simply wants the shrubs and 

grasses to be processed to describe fuel loads, ignoring the trees, then this option is 

available. This will represent the fuel loads for Time 0, but succession will not be 

simulated.  

5) Finally, the user can force succession to be simulated in forested stands.  This can be 

done by choosing a BPS that likely represents the understory response post treatment 

(fire or grazing).  For example, consider the stand in Fig. 14. This stand has an overstory 

of Pinus and Quercus species with an understory dominated by Arctostaphylos patula 

(greenleaf manzanita) and various grasses. Let’s assume a user is interested in growing 

the shrubs and estimating herbaceous response that is likely for this type.  One way to 

“force” RVS to simulate the understory succession is to choose a non-forested BPS with 

similar species composition in the region and substitute.  For example, one could 

consider using a Chaparral BPS such as Northern and Central California Dry-Mesic 

Chaparral (a type where Arctostaphylos patula is very common). This way the simulation 

will be “fooled” into thinking that the site is a non-forested site and the herb and shrub 

dynamics can be processed (but the trees will be ignored). This is a useful but quite 

dangerous operation but it can be used to understand possible succession after a treatment 

or disturbance. In some stands where tree generation is expected to take a long time, this 

might not be a bad choice but this method is not recommended without consulting the 

developers of the system.  



31 
 

 

Figure 13. Example growth of canopy cover and height (of shrubs) for 3 cohorts. Each BPS has 

a unique set of growth estimates for shrubs.  

 

Figure 14. An example of stand where careful selection of a BpS must be made. This is a stand 

where an “overstory/understory” model might be more appropriate. This image was obtained 

from the FCCS Digital Photo series (http://depts.washington.edu/nwfire/dps/).  

http://depts.washington.edu/nwfire/dps/
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1.0.2 Projects Completed With the RVS 

Many results have been generated during the process of developing the RVS.  Table 13 shows a 

general timeline, venue and results for various activities achieved as a result of this work.  We 

address three of these below in more detail including: 

1) Supporting R5 Forest Plan revision through new forage and carrying capacity estimates 

from RVS algorithms 

2) Supporting R4 Forest Plan revision by providing standing carbon estimates from RVS 

algorithms 

3) Supporting the Fire Lab and EPA through seamless rangeland fuel data for emissions 

inventories 

 

All grazing allotments in R5 have been updated with annual production estimates from 2000 to 

2015 using RVS algorithms. This enables more careful planning and also supports grazing 

management decision identified in the NEPA process. Using these data carrying capacity can be 

estimated by intersection with other important data such as distance form water, slope, fencing 

etc. Fig. 15 demonstrates the output from the RVS and shows the temporal profile for a given 

allotment. In Fig. 15, the RVS identified grazing allotments exhibiting steep reductions in 

carrying capacity. The Piute allotment was one of the worst in California in terms of loss of 

production through time.  

 

 
Figure 15. An example of how the RVS can be used to identify anomalous growth trends such as 

that exhibited in California’s grazing allotments administered by the USFS in R5.  

Using the RVS, we provided R4 of the USFS with above ground carbon estimates in all shrubs. 

This was the first time this has been done seamlessly across all National Forests for a region.  

The resulting database is being used to fulfill the requirement to evaluate carbon stocks (both 

above- and below-ground) for the planning process. Finally, applying the RVS in a spatially 
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explicit mode enables estimate of non-forest fuel loads across all 662 million acres of U.S. 

rangelands. These new fuel bed estimates have been used by the Missoula Fire Sciences Lab to 

produce new carbon emission inventories. These data represent the 1, 10, 100, and 1000 – hr 

time lag fuels in both shrub and herbaceous species circa 2013.   

 

Table 13. Results of the RVS project to date.  

Deliverable Type Description Delivery Status 

Website Website for the RVS Code Depository: 

“https://github.com/rlank/RVS” 

Completed 

(2017) 

Symposium The RVS inspired me to develop a symposium for SRM 

Annual Meeting: 

“Remote Sensing and simulation Modeling in Support 

of Public Rangeland Management and Administration” 

Scheduled 

(2017) 

Presentation Lecture on rangeland simulation with RVS to native 

American students at Salish Kootenai Tribal College. 

May 10, 2016. We are examining the potential for 

including simulation modeling in the new Inter-Tribal 

rangeland curriculum  

Completed 

(2016) 

Presentation International Rangelands Congress: “A Prototype 

Application of State and Transition 

Simulation Modeling in Support of Grassland 

Management” 

Completed 

(2016) 

Presentation GEIA Conference 

“Improved Emission Estimates for Large Wildfires in 

the United States” 

Completed 

(2014) 

Poster International Rangelands Congress: “The Rangeland 

Vegetation Simulator: A system for quantifying 

production, succession, disturbance and fuels in non-

forest environments 

Completed 

(2016) 

Poster Ecological Society of America: 

“Simulation modeling improves climate change risk 

management strategies in grasslands. ” 

Completed 

(2016) 

Poster Society for Range Management Annual Meeting: 

“The Rangeland Vegetation Simulator” 

Completed 

(2014) 

Workshop  Set the course for evaluating Ecological Sites and 

merging ST-Sim with RVS algorithms. Resulted in four 

prototype areas where ecological processes were 

simulated on Ecological Sites. 

Completed 

(2014) 

RVS Program 

Version 1.0 

Completed 

Program is available for integration with FVS: 

RVS is an open source C++ library written for multi-

platform deployment.  The code is hosted on Github at 

https://github.com/rlank/RVS.  Current development is 

focused on Windows, but a makefile has been written 

and tested for Linux.  C++ was chosen for compatibility 

with the Forest Vegetation Simulator (FVS), which is 

written primarily in FORTRAN, but also in C and C++.   

Completed 

(2016) 

https://github.com/rlank/RVS
https://github.com/rlank/RVS
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Landfire 

Collaboration 

Working with USGS, NASA and LANDFIRE to 

implement RVS for updating LANDFIRE landscapes to 

account for management, climate and disturbance.  

Ongoing 

Prototype project 

linking with 

Ecological Sites 

via ST-SIM 

The ability to use Ecological Sites with ST-SIM and 

interpreted using the RVS growth, biomass, and fuel 

subroutines successfully demonstrated.  Many 

presentations have been given to demonstrate this 

project.  

Complete 

(2016) 

Program for 

extracting and 

processing 

SSURGO soil data 

for coterminous 

US 

This program was developed in support of the RVS 

effort to include Ecological Sites as a potential 

succession framework to replace BPS.  The tool extracts 

any SSURGO attribute desired but we have used it for 

extracting and identifying Ecological Sites. 

Complete 

(2014) 

Application of 

RVS 

RVS was used in R4 (NFS) to calculate standing carbon 

stocks in shrubs to support Forest Plan Revision. Region 

4 now has soil organic carbon stocks and aboveground 

carbon stocks on all non-forest lands. Seamless carbon 

maps 

Complete 

(2016) 

Application of 

RVS 

RVS was used in R5 (NFS) to estimate annual 

production of all grazing allotments in support Forest 

Plan Revision. Region 5 now has annual rangeland 

production maps from 2000 - 2015 

Complete 

(2016) 

Published 

Database 

Reeves, M.C. Annual Rangeland Production Estimates 

for R5 Grazing Allotments.  2016. RMRS Library 

Digital Database 

In press 

Published 

Database 

Reeves, M.C. Above Ground Carbon Estimates in R4.  

2016. RMRS Library Digital Database 

In press 

Understory 

Equations for FVS 

We derived understory equations for improving 

estimates of stand structure in understories of forested 

stands.  

Complete 

(2015) 

Invited Publication Remote Sensing: Editor Lalit Kumar. Special issue of 

remote sensing (Above Ground Biomass): 

Reeves, M.C. M. Krebs. Estimating above ground 

biomass in rangeland environments 

In Prep 

Publication New equations for predicting herbaceous and shrub 

structure in forested environments. Preparation for 

publication in Forest Ecology and Management 

In Prep 
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1.0.2 Merging With the Forest Vegetation Simulator and Output List 

 

The Rangeland Vegetation simulator can function as two different use cases:  library and 

simulation.  Each major processing module (Biomass, Fuels, Succession, and Disturbance) is 

completely independent of each other, though they follow a common inherited design.  The 

modules have a functional API and can be called programmatically by another program, 

allowing technical users to use RVS as a library of functions (e.g. if a user wanted just to use the 

biomass allometry functions of RVS).  In simulation mode, the command module simply uses 

each of the processing modules in a chain of responsibility pattern, repeating this chain for 

however many years the user wants to simulate. 

 

The intent of developing the RVS was predicated upon finally fusing its functionality with the 

Forest Vegetation simulator (FVS). Fusing the RVS is a complicated task, in part, because the 

RVS is coded in C++ while the FVS was developed mainly in FORTRAN.  In addition, since the 

FVS has never accommodated non-forest vegetation inventory, new databases embedded within 

the FVS are required.  In addition to new databases, the FVS also now requires a new set of 

keywords from which the RVS can be invoked and parameterized.  These keywords include 

provisions for setting up management actions and reporting options in much the same manner as 

setting up a forested simulation in SUPPOSE (the interface developed for setting up and 

conducting FVS simulations).  

 

This process has been one of the bottlenecks of RVS development, especially given the lapses in 

employment and personnel in both the FVS and RVS teams. Progress is being made however 

and should be complete by summer 2017. In addition, there has been discussion and movement 

towards redeveloping the SUPPOSE interface to FVS which could create challenges to 

successful integration of the RVS as a module. Despite these issues, good progress has been 

made on this novel system and the RVS team and FVS leadership (Mike VanDyck) have worked 

quite well together and recognize the importance of timely integration of the RVS.   

 

Going forward, one of the main challenges of using FVS and RVS in concert for full ecosystem 

simulation is dealing with mixed stands.  For example, consider the Jeffrey pine stand in Fig. 16. 

The inventory associated with this plot includes the trees but also some shrubs (Arctostaphylos 

patula, Amelanchier alnifolia, Ceanothus cuneatus) and herbs (Festuca idahoensis).  Presently, 

RVS will ignore the trees since they are dealt with in FVS but fuel loads and production values 

for the shrubs and grasses will be calculated.  We are working to come up with a solution but in 

the interim, we recommend a couple of temporary solutions until the FVS and RVS teams can 

consolidate parallel performance of these programs. The suggestions are: 

1) Run a simulation with FVS to deal with the trees and then; 

2) Run a simulation with the RVS module to deal with the understory and combine these 

outputs as needed. 

3) Work with the FVS team to invoke some of the new understory growth functions that 

are not yet programmed in FVS but can probably be dealt with on an as needed basis. 

This process is explained in the final part of this report.  
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Figure 16.  Jeffrey pine stand with understory demonstrating how mixed stands are complicated 

to simulate ecological processes. This image was obtained from the FCCS Digital Photo series 

(http://depts.washington.edu/nwfire/dps/).  

1.0.4 Concluding Thoughts Regarding the RVS 

 

The RVS represents new simulation capability.  It is meant to be a starting point, a beginning 

architecture that will hopefully improve our understanding of non-forest systems and highlight 

the need for improvement. However there are significant limitations as one would expect.  To be 

fully transparent and to communicate areas that need future improvement we provide a list of 

limitations and assumptions below. As a result of these numerous limitations users must 

carefully check inputs and model outputs.  Finally, because of the novelty of the RVS it is 

obvious that many things could be improved with time and hopefully we are able to do that in the 

near future.   

1) Dealing with mixed systems 

2) BPS to control succession and growth (again it is critical to select the correct BPS, or 

rely on the RVS data loader process and assume it accurate). Also, recognize the 

limitations dealing in BPS’s where trees are found in later successional stages 

3) Unknown relations between herbaceous and shrub cover. This has implications for 

estimates of annual production of herbaceous species where shrubs are present.  We 

are working with the USGS and BLM to obtain more plot level data to improve how 

allocations of annual production. Small datasets for individual projects may be able to 

describe these relations but not across types.   

4) No accounting for invasive species in successional models (because of the link to 

BpS). Since invasive species are uncharacteristic, a model simulation cannot be 

http://depts.washington.edu/nwfire/dps/
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performed if exotic species are entered in the species list and this is why we advocate 

use of state-transition models from Ecological Sites in the next objective of this 

report.  

5) Simplistic estimates of fire effects on succession  

6) Simplistic estimates of herbivory on vegetation and fuels 

7) Limited numbers of allometric equations describing relations between vegetation 

structure and fuel  

 

OBJECTIVE 2:  Evaluating use of Ecological Sites with the RVS via ST-SIM 

2.0.1 Introduction  

The Great Plains grasslands of North America provide a multitude of ecosystem services 

including clean water, forage, habitat, recreation, and pollination of native and agricultural 

plants.  A general lack of quantitative information regarding the effects of varied management 

strategies on spatially heterogeneous landscapes further complicates the issue.  In particular, 

quantifying the interaction of environmental (e.g., drought) influences and managerial strategies 

such as grazing, and herbicide on fire frequency and seasonality  the western Great Plains is 

problematic given the paucity of studies in this region.  This presents unique challenges to 

managers seeking to understand, explain, and justify desired management strategies. This is 

especially true given the ever-increasing environment awareness exhibited by the public at large 

and increasing mounting consumption of goods and services from rangelands.  

Key to the development of land management strategies for land managers is the incorporation of 

drought influences on ecosystem productivity, function and fuel bed properties.  Widespread, 

severe, multi-year droughts are a regular element of the Great Plains system (Woodhouse and 

Overpeck 1998; Schubert et al., 2004).  These drought conditions are projected to increase in 

frequency, severity, and spatial extent (IPCC 2007). The projected increase in drought conditions 

will likely alter grassland composition and productivity, disturbance and erosion ( et al., 2002) 

(Finch  et al., 2012).  

 

Widespread juniper encroachment has led to the most dramatic changes in the Great Plains 

biome since the Dust Bowl era (Engle et al., 2008). In addition, woody plant encroachment into 

southern Great Plains grasslands represents major management challenges.  For example, woody 

encroachment is the primary reason for the decline of the lesser prairie chicken, Tympanuchus 

pallidicinctus, (Fuhlendorf et al., 2002), which is now being considered for listing under the 

Endangered Species Act (Tidwell  et al., 2013).  Additionally, in areas of long-term juniper 

encroachment, fires have shifted from frequent grass-driven surface fires to infrequent, juniper-

driven crown fires. Such alterations to the fire regime and fire suppression potential are 

important contributors to the recent rise in housing losses, suppression costs, and human injuries 

and deaths resulting from wildfires in the Great Plains (Tidwell  et al., 2013). 

 

Given the uncertainty of future climate conditions and lack of decision support tools, managers 

need to know how management actions over the long-term interact with climate variability.  In 

response to this need we have developed a decision support system which models the impact of 

climate on fuelbed properties and associated ecological effects of climate on Great Plains 

grasslands. The system is comprised of two distinct tools which act in concert to produce state-

of-the-art ecosystem modeling capabilities. The first tool (Rangeland Vegetation Simulator, 
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RVS), which is a deterministic model, is still in development. The RVS estimates growth, 

succession, fuels and effects of fire, herbivory, and herbicide on non-forest systems.  The second 

tool, ST-SIM which enables stochastic modeling of ecological dynamics. In this system, ST-SIM 

is used for developing and conducting state-transition simulation model for the study area. 

The term "state-and-transition model" (STM) was first introduced by Westoby  et al., (1989) in 

reference to conceptual models describing the successional dynamics of rangeland vegetation 

over time. Through the use of box-and-arrow diagrams, these early models described a series of 

discrete states in which a parcel of land could find itself at any point in time, along with 

transitions, both natural and anthropogenic, that could move land between these states. 

Conceptual STMs are generally developed with one or more of the following goals (Bestelmeyer  

et al., 2009, Karl and Herrick 2010): 

1. Communicating and interpreting ecological processes. STMs provide a simple, flexible 

approach for describing vegetation dynamics. They provide a common set of terms for 

scientists and managers to use when referring to the ecology and management of 

vegetation across a landscape. The models, in turn, provide a framework for reporting 

across different agencies; they also provide an excellent visual tool for communicating 

ecological concepts to a wide range of stakeholders. 

2. Identifying poorly understood ecological processes. Through the development of STMs, 

knowledge gaps in the understanding of the ecology of a system become apparent; this, 

in turn, can help identify where future research efforts should be directed. 

3. Assisting in monitoring design. STMs can indicate which sites are more or less likely to 

experience changes in vegetation over time, and thus will require greater monitoring 

intensity. 

 

A second form of STMs exist that extend the conceptual models such that they become 

quantitative, leading to models that can simulate the states and transitions that might occur over 

time across a landscape; these are often referred to as "state-and-transition simulation models" 

(STSMs). The first published example of STSMs being applied to vegetation dynamics was the 

development of  models to predict the combined effects of succession and disturbance, including 

various land management strategies, on the forest and rangeland vegetation of the Interior 

Columbia River Basin (Hann  et al., 1997); since then STSMs have been applied in a wide range 

of ecological settings (Forbis  et al., 2006, Hemstrom  et al., 2007, Carlson and Kurz 2007, 

Provencher  et al., 2007, 2013, Strand  et al., 2009, Frid and Wilmshurst 2009, Czembor and 

Vesk 2009, Klenner and Walton 2009). 

 

STSMs are stochastic models: the models use a combination of probabilistic and deterministic 

transitions to predict a range of possible future conditions. Because the models are stochastic, the 

simulations can be run using a Monte Carlo approach: this involves repeating the simulations 

many times with parameter values selected randomly from specified probability distributions.  

The result is a range of outcomes for future vegetation that reflect natural variability and 

uncertainty, rather than a single prediction. In addition STSMs can be run spatially over an entire 

landscape, in which case the landscape is divided into a series of spatial cells (e.g. pixels or 

polygons), and the fate of each cell is tracked over time; the output of spatial STSMs is typically 

a map providing predictions of future vegetation across the landscape. A particular form of 

spatial simulation, referred to as a spatially-explicit STSM, allows for the transition probabilities 

and targets of each cell to be influenced over time by the state of the cell's neighbors. This allows 
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for the effects of spreading processes (e.g. invasive plants) to be reflected in the model 

predictions. 

 

A suite of software tools have been developed allowing users to design and run STSMs (Daniel 

and Frid 2012). These tools have all been jointly funded by multiple agencies over the years, and 

as a result they are all available for free.  The latest of these is ST-Sim (ApexRMS 2015), a fully 

integrated framework for creating and running both non-spatial and spatially explicit STSMs.  

ST-Sim is freely available for download and is being used by ecologists and land managers 

across North America. Various ST-Sim applications were recently showcased at the Second 

State-and-Transition Simulation Model conference (Wilson  et al., 2014 – see also 

www.stsm2014.org). 

 

In the system presented here for managers of the Great Plains the two programs communicate 

with one another such that ST-SIM estimates the structure and composition through time while 

the RVS is responsible for estimating annual production, biomass, and fuels. The user of the 

system has control of various elements of ecological succession and must provide a baseline of 

ecological trajectories. For example, what are the ecological dynamics of the system being 

studied and what viewpoint of succession is desired?  Is the system supposed to modeled as a 

linear progression (e.g. a Clementsian viewpoint) or is the site more appropriately characterized 

using state/transition theory?  

 

As a user driven simulation system, this decision support tool enables managers to determine the 

most appropriate management strategies for reducing fuel loads and fostering ecological 

resiliency. This novel decision support system represents a multiyear, international effort, and 

this document describes a prototype application on the Great Plains and estimates ecosystem 

response by focusing on two important elements including: 1) estimating future fuel bed 

properties and associated fire behavior and 2) quantifying feedbacks between fire cycle, climate 

and species assemblages and structure. Model output and algorithms are calibrated and validated 

using long-term data sets describing vegetation, response to fire treatments, local climate, 

herbivory, and herbicide through predictive modeling.  Properly calibrated application of the 

system will aid design of land management strategies and demonstrate the means to extrapolate 

these predictions to landscapes throughout the Great Plains and elsewhere that proper 

parameterization is conducted. When properly calibrated the system is useful for broadly scoped 

situations as: 

1) Aiding the risk assessment between the no action and proposed action on decision-

making and NEPA documentation. 

2) Aiding in addressing public concerns when presenting prescribed fire proposed actions. 

3) Presenting the long range implications and potential impacts of development in 

vegetation types or next to public land boundaries. 

4) Providing information or education tool to public, elected officials and other agencies. 

In addition, more detailed situations can be evaluated such as: 

1) Quantifying the impact of fire, and herbivory on successional trajectories and associated 

fuelbed properties 

2) Quantifying stand attributes in the context of wildlife habitat suitability analysis. For 

example, “what is the impact of proposed management actions on sagebrush structure 

and composition and what will that mean for sage grouse brooding habitat” 

http://www.stsm2014.org/


40 
 

3) Quantifying fuelbed loading and continuity for evaluating fire behavior potential. For 

example, “What is the reduction is spread rate and flame length resulting from a proposed 

fuel reduction project and should prescribed fire, and herbivory be used to achieve the 

desired reduction?”.  

 

To demonstrate use of the system for addressing these questions, we developed a prototype 

application specifically for managers of the Great Plains. The second largest component of the 

National Forest System is the national grasslands. The Forest Service currently administers 

twenty national grasslands consisting of 3,842,278 acres of federal land. National grasslands are 

located in thirteen states. However, nine national grasslands consisting of 3,161,771 acres of 

federal land are in the Great Plains states of Colorado, North Dakota, South Dakota, and 

Wyoming. National grasslands in these four states alone thus contain more than 82% of the total 

national grassland acreage (Olson, 1997). As a result, the decision support system is applied to 

the Loamy Plains Ecological Site (ES) on the central Great Plains in north central Colorado (Fig. 

17).  

 

 
Figure 17.  Location of the Loamy Plains Ecological Site for examining the potential for linking 

State-Transition Simulation Modeling from ST-SIM and the RVS.  
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The application of the system in this region is meant to accomplish three primary goals: 

1) Communicate to managers in the region that this system is available for their use.  To this 

end, we provide enough background and methodological information for managers to use 

the system directly by correspondence with the development team at the Rocky Mountain 

Research Station. 

2) Demonstrate usefulness and limitations of this newly developed to hopefully incite 

managers to be become engaged with the tool so as to calibrate it for use in areas of their 

choosing. In addition, we discuss the results of the prototype application on the central 

Great Plains which should, themselves, provide guidance to managers about expected 

effects of management actions on ecological status and vegetation composition and 

structure through time.    

3) Analyzing the relationship between the LANDFIRE BPS data and the ES’s that intersect 

them.  

It is the hope and intent of the development team that this report will suitably convey use, 

calibration and application of the system such that it will form an integral component of 

planning processes engaged in by managers throughout the extent of U.S. rangelands. This 

report, however, should not be considered a user’s manual but instead represents 

demonstration of its use as a decision support tool.  

 

2.0.2 Goals 1 and 2: Communicating and Describing a Prototype Application 

 

2.0.2.1 Simulation Flow 

 

The overall system flow is shown in Fig.18. Prior to simulation, the manager must determine the 

questions or problems that will ultimately be used to design simulation. Three main inputs are 

required at this stage including estimated growing conditions, management actions, and 

landscape conditions including stand location (Latitude and Longitude in the NAD83 datum) and 

vegetation composition and structure.  At the least, these data need to describe cover and height 

of shrubs and herbaceous species.  Identification of species is not required for herbs or shrubs but 

results will be less reliable if species level information is not supplied because it will not be 

known which allometric equations to use.  It is important to recognize that this section of the 

report describes system processes representing the default (e.g. the dominant system processes 

and associated assumptions) system or, in other words, the manner in which the system behaves 

if the user is limited to minimal interaction. Is also important to recognize that this system was 

built with the potential for significant user interaction, particularly in the realm of vegetation 

succession and the manner in which vegetative assemblages relate to one another and the 

mechanisms by which transitions between states are common. 
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Figure 18. The overall flow for the system linking the Rangeland Vegetation Simulator and ST-

Sim. This system begins with a manager formulating a “what if” scenario and adds design 

criteria (climate, management actions etc.) and spatially explicit plot level information 

describing vegetation composition and structure.  

2.0.2.2 Study Area 

 

A prototype of the system was applied on the Loamy Plains ES (R076BY002CO) found in the 

Major Land Resource Area (MLRA) 67B consisting of the southern part of the Central High 

Plains (67B) extends across most of the eastern portion of the state of Colorado, from the border 

with Wyoming and Nebraska to the border with Oklahoma and New Mexico (Fig. 17).  The 

climate within this region is characterized by a mean average annual precipitation of 305 – 406 

mm, with the amount received in any given year varying widely, from less than 200 mm to more 

than 500 mm.  The region also experiences average winds of 9 mph annually, with peak winds in 

the spring.  Average growing season length is 142 days, with the frost-free period extending 
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from mid-May to late-September.  Mean monthly minimum temperatures vary from -11.0 C 

(Dec) to 13.0 C (July), and mean maximum monthly temperatures vary from 7.3 C (Jan) to 34.4 

C (July).   

The most common ES within this MLRA is the Loamy Plains ES, which occurs on nearly level 

to gently sloping plains (0 to 6% slopes) from 3800 to 5600 feet in elevation.   This ES is 

characterized by soil textures consisting of loam, sandy loam, or very fine sandy loam in the 

surface layer and loam in the subsurface layer.   These soils are typically well-drained, 

moderately to very deep, formed in loamy loess and eolian deposits, and occur on upland plains 

as well as terraces.   

 

The dominant plant species on this ES (in terms of their basal area and contribution to ANPP) 

are two C4 shortgrasses (blue grama, Bouteloua gracilis and buffalograss, B. dactyloides).  Other 

less abundant but important plant species include C3 perennial gramminoids (Pascopyrum 

smithii, Hesperostipa comata, Elymus elymoides, and Carex spp.), a C3 annual grass (Vulpia 

octoflora), C4 bunchgrasses (Aristida longiseta, Sporobolus cryptandrus, Bouteloua 

curtipendula), plains pricklypear cactus (Opuntia polyacantha), and subshrubs (Gutierrezia 

sarothrae, Eriogonum effusum, Artemisia frigida; Lauenroth and Burke 2008).  In some portions 

of the MLRA, plains pricklypear cactus can be the most abundant species after the C4 

shortgrasses, with basal area of up to 5% (Milchunas  et al., 1989).  The most widespread forb 

species is the perennial scarlet globemallow (Sphaeralcea coccinea).  A diverse community of 

annual and perennial forbs also occurs on this site, particularly in wet years, with the forb 

composition highly dependent on annual weather conditions.  Variation in plant community 

composition on this ecological site is primarily characterized by variation in the relative 

abundance of C4 grasses versus C3 perennial graminoids.   

 

Phase 1 is characterized by nearly complete dominance of C4 short grasses, with western 

wheatgrass occurring in only trace amounts.  The state is often described as having a “sodbound” 

structure and is associated with heavy grazing pressure throughout the year or the growing 

season.  Dominance of the C4 shortgrasses is associated with their high grazing tolerance, which 

in B. gracilis is associated with high relative allocation of photosynthate to belowground roots 

and crowns, and in B. dactyloides is associated with the production of stolons and prostrate 

leaves below the grazing height of ruminant herbivores.   

 

Phase 2 is characterized by the dominance of C4 shortgrasses, but with greater abundance of 

cool-season graminoids compared to Phase 1, particularly western wheatgrass and needle-and-

thread grass.  This phase is associated with reduced overall grazing intensity, or grazing regimes 

that involve more pulsed grazing pressure (i.e. characterized by greater variability in space and 

over time). Other species that may increase in phase 2 relative to phase 1 in portions of the 

MLRA include winterfat (Ceratoidies lanata) and legumes such as American vetch (Vicia 

americana).   

 

Phase 3 is characterized by a substantial increase in C3 graminoids relative to phase 2, 

particularly western wheatgrass and needle-and-thread grass.  This shift results in a significant 

increase in aboveground net primary productivity, particularly with wet spring conditions, 

relative to phase 2.  Phase 3 is associated with low to moderate overall grazing intensity, and 

may be facilitated by more pulsed and variable grazing distribution in space and time.   
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Phase 4 is associated with the lack of grazing or fire for long periods of time, and is 

characterized by increased surface litter, increases in C3 perennial grasses, and a concomitant 

decline in plant basal cover and density.  

 

2.0.2.3 STSM Description for MLRA 67B “Loamy Plains”  

 

The conceptual version of this State/Transition model is described in detailed in the ES’s 

Information System (ESIS) database1. A number of modifications were made to this conceptual 

model in order to incorporate new information gathered by researchers at ARS: 

1. The “states” identified as Blue Grama Buffalograss Sod and Red Threeawn Annuals Bare 

Ground were represented as “phases” of the reference without the irreversible transitions 

identified in the original ESD. This modification is based on work done by Augustine  et 

al., (2014) showing a rapid recovery of the system following the extirpation of prairie dog 

colonies at sites that experienced long term grazing and disturbance. 

2. For each phase in the reference plant community except the Red Threeawn Annuals Bare 

Ground phase we added a parallel phase representing a high density of plains pricklypear 

cactus. This reflects recent work by Augustine et al., (2015) showing that the lack of fire 

can lead to an increased density of cactus which in turn reduces grass availability for 

livestock consumption. 

Fig.19 shows the overall structure of the State/Transition Simulation Model (STSM) states and 

the duration of each phase with “age zero” representing those sites that have experienced heavy 

repeated disturbance by either cattle or prairie dogs. The following are the key processes and 

associated transitions that are included in the model:  

1. “Normal Grazing” by cattle represents a utilization rate of approximately 0.5 AUMs per 

hectare per year. This type of grazing shifts a site back in the successional trajectory by 

two years towards age zero. 

2. “Heavy Grazing” by cattle represents a utilization rate of approximately 0.9 AUMs per 

hectare per year. This type of grazing shifts a site back in the successional trajectory by 

four years towards age zero. 

3. “Lack of Fire” for a period of 20 years or more results in a transition to the cactus 

equivalent of the current phase representing a site with a high density of prickly pear. 

4. “Fire” prevents the transition to the cactus phase and if it already has occurred reverses it.  

It also transitions sites from the excessive litter phase to the historic climax plant 

community phase. 

5. “Drought” results in a backwards shift in the successional trajectory by two years towards 

age zero. 

 

                                                           
1 
https://esis.sc.egov.usda.gov/ESDReport/fsReport.aspx?id=R067BY002CO&rptLevel=communities&approved=yes
&repType=regular&scrns=&comm=  

https://esis.sc.egov.usda.gov/ESDReport/fsReport.aspx?id=R067BY002CO&rptLevel=communities&approved=yes&repType=regular&scrns=&comm
https://esis.sc.egov.usda.gov/ESDReport/fsReport.aspx?id=R067BY002CO&rptLevel=communities&approved=yes&repType=regular&scrns=&comm
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Figure 19. Overall structure of the STSM for the Loamy Plains Ecological Site for MLRA 67B.  

Abbreviations are as follows: BGraBuffSd – Blue Gramma Buffalograss Sod, BGBSCS – Blue 

Gramma Buffalograss Sod with Cool Season Remnants, HCPC – Historic Climax Plant 

Community, ExLitter – Excessive Litter, RedThraAnnBG – Red Threeawn Annuals Bare 

Ground. 

The rate at which these transitions occur in the model can be set in various ways. For example, 

the rate of grazing is set by specifying the target AUMs applied to the landscape or the plot on 

each year of the simulation. The model then allocates this target across the simulation cells 

probabilistically.  Fire or the lack of it can be specified probabilistically, using a time varying 

annual probability, or deterministically by specifying the years during which the plot or a 

specified area of the landscape will burn. 

 

During the simulation, percent cover and height by functional group (herb, shrub, tree) are 

accounted for by using the relationship between canopy cover and productivity derived from the 

Landfire BPS classes as portrayed in Table 7. To demonstrate the use of the model we defined a 

number of example scenarios for a single plot 1 acre in size. The plot was initialized in the 

Historic Climax Plant Community phase with 30% herb cover. Each scenario was simulated 

from 2015 to 2050 and the simulations were repeated 100 times to provide a distribution of 

outputs. The scenarios simulated involved three components: 

1. Grazing intensity (none, 0.5 AUMs per acre per year, 0.9 AUMs per acre per year, none 

followed by 0.5 AUMs per acre per year after 2030). 

2. Drought (none, drought between 2025 and 2029). 

3. Fire (none or an annual probability ranging from 0.01 to 0.05 depending on vegetation 

phase). 

 

In addition to simulating ecological change and corresponding fuelbeds through time, a 

landscape level simulation representing the Loamy Plains ES was also performed.  The processes 
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for performing a landscape level simulation are identical as to a single plot, but the landscape 

conditions for each area must be specified.  This enables the evaluation of fuel conditions across 

the entire 320 acre pasture.  

 

2.0.2.4 Data Used in the Simulation  

 

Data used for this prototype project are categorized as location, growing conditions, current 

vegetative states, and proposed management actions (Table 14). The number of potential 

combinations of proposed management actions is quite large but to demonstrate a range of 

potential outcomes we chose to emulate the effects of no, moderate, and heavy stocking rates 

with either no drought or extended drought.   

 

Table 14. List of model initialization parameters. This list represents parameters actually used in 

this prototype analysis.  

Location  Temporal 

domain 

Growing 

conditions 

Current vegetative 

states 

Simulation design 

criteria 

Multiple 

plot 

locations in 

the area of 

north central 

Colorado on 

the Loamy 

Plains 

ecological 

site  

50 years Annual 

Precipitation 

(mm) 

[Parameter-

elevation 

Relationships on 

Independent 

Slopes Model; 

PRISM, (Daly  et 

al., 2001) 

Estimated vegetation 

composition and 

structure 

(plot inventory, 

reconnaissance). 

Leo, what is our 

starting condition for 

the landscapes? 

1) No drought, no 

grazing 

2) No drought, 0.5 

AUMs ac-1 

3) Extended drought, 

1.2 AUMs ac-1 

 

  Annual maximum 

Normalized 

Difference 

Vegetation Index 

(NDVI) 

Moderate 

Resolution 

Imaging 

Spectroradiometer 

(MODIS; 250 m2) 

  

 

We wanted to match the periodicity of growing conditions as closely as possible so a historical 

time series from 1981 to 2012 was used to guide the simulation. In total there were 50 years of 

simulation (2000 to 2015 for validation and 2015 to 2050 for the projection period). Since the 

historical period only represents 31 years of observations, the time series was repeated in the 

simulations (Fig. 20). For example, for 2013, the year 1981 was used. The observed precipitation 

is shown in relation to the “normal” growing condition index to show the direct relationship 

between precipitation, NDVI (not shown) and the growing condition index (explained above in 

this report). In addition to normal conditions, an extended drought was simulated whereby all 

years in the simulation were estimated to be at 50th percentile (growing index of 3) or below.   
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Figure 20. Time series of growing conditions used in the simulations.  The shaded area 

represents where data were duplicated from the beginning of the time series.   

 

There were two time periods for simulation, including one to accommodate the validation period 

(2000 to 2015), and one for a projection (2015 to 2050). The purpose of the first period was to 

accommodate the time period during which validation data were collected and also to 

demonstrate the relationship between annual production and surface FBFM. The purpose of the 

projection period was to implement the sets of treatments outlined above and observe the 

estimated long term response of the vegetation.  In the projection period, fire was introduced into 

the system probabilistically, which explains some of the variability between iterations.  

 

2.0.2.5 Validation 

 

The STSM which was digitized from the Loamy Plains ES state-transition diagram was 

calibrated and validated using long term experimental observations from the Agricultural 

Research Station.  Recall that at each year of the simulation, the model produces annual 

estimates of production for each state phase. To compare with the observations, all production, 

across all the state phases in each year was aggregated to derive a single production value 

representing temporal averaging for each grazing scenario. The data observations of annual 

production were given to us by the ARS High Plains Experimental Station. For the validation, 

the ST-SIM model was run from 2000 to 2015 to match the time period for which the 

observations were recorded.  In this simulation, cover, height, annual production, 1- hr 

herbaceous fuels and surface Fire Behavior Fuel Models were simulated although the only 

validation data available was the annual production.   
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2.0.2.6 Results 

 

2.0.2.6.1 Validation and Surface FBFM Results 

 

For the period between 2000 and 2015, the observed production ranged, on average, between 

about 900 and 1200 lbs ac-1, while predicted values ranged from about 850 to 1100 lbs ac-1 (Fig. 

21).  In all grazing treatments the predicted and observed values aligned well but, with a bias of -

60 lbs ac-1, tended to under predict observations. In addition the variability of production values 

of the observations was much greater since these are collected in very small plots in a 320 acre 

pasture while the model encapsulates the spatial averaging that occurs over the entire area. 

Though not part of the official validation part of this project, Fig. 22 shows the sensitivity of this 

novel system to interannual changes, from 2000 to 2015, in production and, more importantly, 

what it means for the estimated surface FBFM. Note that the heavy grazing scenario produced, 

on average, an approximated reduction in annual production of about 70%.  

 

 
Figure 21. Predicted and observed annual production data collected over the study area by the 

staff of the ARS High Plains Research Center.  
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Figure 22. Predicted annual production and surface FBFM for Ecological Site in the study area 

from 2000 – 2015 across two grazing treatments.  

 

In addition, the RVS fuel subroutine uses this information combined with other data to estimate 

the surface FBFM which is generally coded as a GR1 (very low expected fire behavior) for the 

heavy grazing scenario while the light grazing scenario consistently produced a GR2 and, in 

some areas of the pasture, a GR4.  This demonstrates the suitability of this system, using 
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Ecological Sites, for evaluating the effectiveness of grazing treatments (and fire if desired) with 

respect to fuels.  

 

2.0.2.6.2 Projection Period Results 

 

Fig.’s  23 and 24 show projected herb cover for the plot (central 50% of iterations) in scenarios 

with fire and Fig. 25 demonstrates some scenarios without fire. Fig. 26 shows the probability of 

the plot being in any one ES Phase over time for each of the different scenarios that included 

fire. The simulation clearly demonstrates the propensity of this ES, as coded in the ST-SIM 

platform informed by RVS subroutines, that cool season species are replaced by warm season 

sod-producing species more quickly in the heavy grazing scenario. It is interesting to note, 

however, that drought, coupled with the moderate grazing regime produced nearly similar results 

by the end of the simulation period (Fig. 26). However the drought effect was much less apparent 

with respect to state changes towards the warm season sod-state in the no grazing treatment.   

 
Figure 23. Projected percent herb cover (central 95% of iterations) under different drought and 

grazing scenarios with fire. 
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Figure 24. Projected percent herb cover (central 95% of iterations) under different drought and 

grazing scenarios without fire. 

 

 
Figure 25. Projected percent herb cover (central 95% of iterations) under different drought and 

grazing scenarios without fire. 

 

So, in this system, the no grazing scenario delayed the introduction (or probability of 

introducing) warm season dominance for at least 20 years while the heavy grazing scenario 
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began increasing this probability in as little as 5 years. The no grazing, no drought scenario did 

not produce noticeable increases in the sod-state but it had the greatest effect on increasing 

production of the excessive litter state.  

 
Figure 26. Probability of the plot being in each of the ecological site phases over time. 

Abbreviations are as follows: BGraBuffSd – Blue Gramma Buffalograss Sod, BGBSCS – Blue 

Gramma Buffalograss Sod with Cool Season Remnants, HCPC – Historic Climax Plant 

Community, ExLitter – Excessive Litter, RedThraAnnBG – Red Threeawn Annuals Bare 

Ground. 

 

This condition has significant ramifications for fuel accumulation and therefore the expected fire 

behavior. With respect to various management and climate scenario effects on canopy cover, 

these are best represented in a table format. As a result, three tables are provided for brief 

overviews of model results including Table 15, Table 16, and Table17.  

 

Table 15. Canopy cover results with respect to the Loamy Plains Ecological Site processed in 

ST-SIM with RVS subroutines. In this simulation, no drought was imposed but fire is active in a 

stochastic manner. In addition, different grazing regimes were examined. 
GRAZING NO DROUGHT 

NONE Rising to 60% but with the greatest variation 

Normal Nearly identical to heavy after about 10 years, resulting in average cover of about 20 %. However, by the end of 
the simulation period the normal grazing scenario produced overall greater cover and higher fuel loads than the 
heavy grazing scenario.  

Heavy Noticeable immediate reductions in canopy cover relative to the no grazing scenario.  
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Table 16. Canopy cover results with respect to the Loamy Plains Ecological Site processed in 

ST-SIM with RVS subroutines. In this simulation, drought and no drought were imposed and fire 

is active in a stochastic manner. In addition, different grazing regimes were examined. 
GRAZING DROUGHT NO DROUGHT 

NONE- Delayed then 
moderate after 2035 

N/A Canopy cover climbing from 40 to about 70% after about 15 years, but with high 
variability. The introduction of moderate grazing at that time (2035 decreased cover 
through time stabilizing at about 25%  

Normal Canopy cover dropped 
immediately through 
time stabilizing near 20% 
cover after 8 – 10 years.  

N/A 

 

Table 17. Canopy cover results with respect to the Loamy Plains Ecological Site processed in 

ST-SIM with RVS subroutines. In this simulation, drought and no drought were imposed and fire 

was not permitted. In addition, different grazing regimes were examined. 
GRAZING DROUGHT NO DROUGHT 

NONE N/A Canopy cover climbing from 40 to about 70% after about 15 years, and with small 
variability. The introduction of moderate grazing at that time (2035 decreased cover 
through time stabilizing at about 25%. Compared with the fire scenario of with no 
grazing and no drought, this treatment exhibited much less variability in the cover 
response.  

NONE Somewhat tracks the no 
drought scenario for 
about 11 years and then 
cover drops significantly 
to about 25% but 
recovers towards the end 
of the projection period 

N/A 

MODERATE Canopy cover dropped 
immediately through 
time stabilizing near 20% 
cover after 8 – 10 years. 
This produced the lowest 
cover of all treatments 
with little variability 
indicating the relatively 
certainty of this effect. 

Canopy cover dropped immediately through time stabilizing near 20% cover after 8 – 
10 years. The main difference compared with drought is that there is a lot more 
variation towards increased cover indicating that this treatment, overall, will 
produce slightly greater residual cover and slightly higher fuel loads than the 
extended drought scenario.  

 

Overall, the results portrayed here representing ecological simulation with ecological sites, ST-

SIM and the RVS demonstrate the potential for seamless, wide area simulation of management 

effects in rangelands of the western U.S.  

 

2.0.3 Goal 2: Ecological Site Relationships With BPS Across the West 

In this second goal the spatial and thematic relations between ES’s and BPS were examined.  

This was done to better understand how these two datasets can be used in concert to develop a 

national strategy for producing ecological simulation across the western U.S. to support fire 

management and landscape conservation.  This task was accomplished in three steps: 

1) Map ES’s 

2) Intersect ES’s with BPS data 

3) Examine the relationships between BPS and ES’s using seven questions 

a. For each BPS, in each mapping zone, how many unique ES’s are there?  

b. For each BPS, in each mapping zone, what is the biggest ES (most coverage)? 

c. For each BPS, in each mapping zone, what proportion of each BPS has no ES? 

d. For each BPS, in each mapping zone, how many ES’s does it take to cover 90% 

of BPS area?   
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e. For each BPS, in each mapping zone, what are the top 3 (greatest areal coverage) 

ES’s? 

f. Without respect to zone, what is the biggest ESD across all BPSs? 

 

In addition to answering these questions we provide an estimate of the process for enabling a 

seamless solution for mapping ecological dynamics across the western U.S. using the RVS for 

the fuels, and production and ES’s coded in ST-SIM for estimating the proportion of the 

landscape in various vegetative states.  In effect, we estimate the difficulty of implementing the 

prototype discussed above across the landscape using ES (where they exist) and BPS to fill in the 

gaps. This process was made possible by the questions and spatial analysis outlined above in the 

questions we answered.  

 

2.0.3.1 Mapping ES’s 

 

To map ES’s, the entire SSURGO data depository was obtained on an external hard drive.  We 

had to develop a program for extracting the ES’s (EcoClassID) from the SSURGO database. 

This custom program was developed and is standalone software available from the author. It can 

be used to extract and aggregate any attribute in the SSURGO database. For each Map Unit in 

the database there are multiple components (and ES’s) in various proportions. The precise 

location of each component, however, is not possible to know. For example, for a given soil 

polygon in a given mapping unit, the exact ES is not known unless the entire Map Unit is 

occupied by a single ES. As a result, a spatially explicit database describing all ES’s representing 

a given map unit with their corresponding proportions was completed.  In addition, we also 

developed a database describing only the most abundant ES’s in each Map Unit. Using these data 

the extent of ES’s was quantified across the western U.S.  

2.0.3.2 Intersecting ES’s with BPS Data 

After preparing and mapping all ES’s, the next step was to spatially intersect ES’s with the BPS 

data from LANDFIRE. This spatial intersection was constrained by the following criteria: 

1) Evaluate predominantly non-forest vegetation  

2) Focus on the analysis mask shown in Fig. 27 

 

 
Figure 27. Extent of the analysis of Ecological Sites with respect to BPS.  



55 
 

Two intersections were performed.  One accounted for all possible combinations of ES’s and 

BPS while the second accounted for only the top ES in each BPS. This produced a “noisy 

dataset” with hundreds of thousands of combinations that were not realistic.  For example, if 5 

aberrant BPS pixels intersect an ES, that is a new combination. Indeed many combinations 

represented just a few acres. As a result the following screens were performed prior to answering 

our main questions outlined above. 

1) ES Description classifications were restricted to only vetted ESIS systems representing 

the most recent, authorized, and nationally sanctioned classification.  This is an 11 

character alpha-numeric code (e.g. R041XB206AZ). This restriction alone reduced the 

number of records within our database by over 40%. 

2) Extracted SSURGO-ES Description data were queried further to contain contiguous 

areas of 1000 acres or greater. Based on the 35 m2 resolution of the resampled SSURGO 

data, this amounted to a minimum threshold of 3303 pixels (1000 acres = 4,046,856 

m2/(35*35) = 3303 pixels). This reduced our data by another 88%. 

3) Soil component percentages within a mapping unit were summed together in instances 

where there were two (or more) of the same ES’s for a given SSURGO sampling unit. 

This resulted in a complete list of unique ES IDs for a given mapping unit (in descending 

order of component percent). 

4) Lastly, the ES Descriptions with the largest summed component percentages were then 

selected for inclusion for each mapping unit representing more than 1000 acres, by 

selecting MAX component percent and First ES Description, where multiple ESDs exist 

for a given mapping unit. 

The resulting database contained 99,494 records, each representing one ES Description (with the 

largest component percentage) per mapping unit greater than or equal to 1000 acres. 

Summarizing and aggregating unique ES Descriptions further by BPS and Zone resulted in a 

database containing 23,030 records. This dataset formed the final database from which our 

questions were answered.  

 

2.0.3.3 Answering the Questions 

1) For each BPS, in each mapping zone, how many unique ES’s (ES) are there? 

Answer: There are a total 1251 BPS and Zones (unique combinations of BPS and 

Zones) in our dataset. Applying our criteria, we have 891 BPS and Zones which 

contain ES’s. The remaining 360 BPS and Zones were either excluded (i.e. BPSs 

from eastern U.S.) or did not contain ESDs that met our filter criteria (above).  

This number ranges from 1 to 264 unique ES’s. Fig.28 displays the number of 

ES’s in each BPS. In a sense it determines how “complex” a landscape is for a 

given BPS. 
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Figure 28. Number of unique ES’s underlying each BPS meeting our filtering criteria.  

2) For each BPS, in each mapping zone, what is the biggest ES (most coverage)? 

The largest ESD for each of the 891 BPSs in each Zone is reported. The 

remainder represents the 360 BPSs and Zones without ESDs This gets at the 

biggest driver across the landscape for a given BPS. Often, one or two ES’s will 

dominate a given BPS (cover the majority of the areal extent of a given BPS). So, 

using this most common ES to estimate successional dynamics for a given BPS 

will produce the biggest “bang for the buck”. A map is not produced for these 

data since they are too complex but for any BPS we can deliver the most 

dominant ES.  

3) For each BPS, in each mapping zone, what proportion of each BPS has no ES? 

This indicates how well described each BPS is in terms ES’s.  Areas where a BPS 

has no ES underlying it can be populated using a likely candidate ES such as the 

most common one. This way, the spatial pattern of the BPS can be used to fill 

gaps in the ES database where ES’s have not yet been described. The proportion 

of each of the 891 BPSs in each zone without ESD coverage range from nearly 

100% (excluding those BPSs either excluded or not meeting filter criteria) to 

nearly 0.02%.  

4) For each BPS, in each mapping zone, how many ES’s does it take to cover 90% 

of each BPS’s area?  There are 42 BPSs and Zones (i.e. 28 BPSs in 12 Zones) that 

have ESD area coverage exceeding 90% of the BPS area in that Zone. The 

number of individual ESDs within these areas range from 3 to 156. This metric 

indicates how hard (how much it would take) to successfully simulate the 

dynamics of a given BPS. Areas where it takes more ES’s to complete 90% of the 
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BPS will cost more to deal with since more ES’s are required to be coded and 

applied across the landscape. This is reflected in Fig. 29.  In this figure only those 

BPS’s that are covered by at least 90% of ES’s are shown. For example, if a BPS 

has 20% of its area with no ES intersecting it, it will not be shown. The estimated 

area of BPS’s intersected by ES’s where the ES’s occupy at least 90% of this area, 

is about 56 million acres.  

 
Figure 29. Number of ES’s required to cover 90% of a BPS in BPS’s where at least 90% is 

covered by ES’s.  

5) For each BPS, in each mapping zone, what are the top 3 (greatest areal coverage) 

ES’s? This is contained in a database and an example of what this looks like is 

contained in Table 18.  

 

In a similar manner, looking at BPS and ES combinations reveals that only a few combinations 

make up a large majority of the total coverage of the area investigated here.  Of the total number 

(n=267) and area of BPSs containing ESDs (n=23,030) considered here, a little over half of this 

total area is represented by Ecological Site Descriptions. Beginning first with the largest BPSs 

containing the largest areas occupied by ESDs, the relatively quick divergence of both 

cumulative areas through the 8,000th ESD, indicate that there is a declining cumulative 

representation of ESDs, as BPS areas continue to increase at a faster rate than associated areas of 

ESDs (Fig. 30).   
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Table 18. Top 3 ES’s (by areal coverage) in each BPS. This is an example, and the full database, 

of course, contains all the BPS’s examined in this report.  

BPS Ecological Site ID 

Great Basin Pinyon-Juniper Woodland R038XA104AZ 

 

R030XC355AZ 

 

F030XC375AZ 

Northwestern Great Plains Mixedgrass Prairie R052XN161MT 

 

R052XC217MT 

 

R046XC508MT 

Chihuahuan Mixed Salt Desert Scrub R041XA007NM 

 

R041XA002NM 

 

R042XB011NM 

Western Great Plains Sandhill Steppe R041XB212AZ 

 

R041XB214AZ 

 

R041XB206AZ 

Western Great Plains Shortgrass Prairie R077CY037TX 

 

As increasingly smaller BPSs and associated ESDs are added, relative ESD coverage declines 

less rapidly until the asymptote (after 21,000 ESDs), where about 53% of overall ESD coverage 

is eventually reached over all the BPSs. There are a handful of large BPSs that have a higher 

relative ESD representation than most others. In fact, the largest 18 BPSs, comprising 50% (2.5 

million km2) of the BPS total cumulative area, are represented by nearly a little more than a third 

of all the ESDs (n=8842). These ESDs alone comprise 64% of the largest 18 BPS total area and 

61% of the total cumulative ESD area.  The remaining 50% (2.5 million km2) of BPS area 

consists of 249 BPSs and 14,188 ESDs, and only 41% of the total cumulative BPS area and 39% 

of the total cumulative ESD are.   
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Figure 30. Cumulative area of BPS and ES’s. This can be used to determine how much more 

cumulative area can be covered by each additional BPS and ES combination.   

 

6) Without respect to zone, what is the biggest ESD across all BPSs?. The largest 

ESD in our dataset is R077CY022TX, representing a total acreage of nearly 7.3 

million acres, spanning both Texas and New Mexico. This ES is shown in Fig. 31. 

The implications of this is that for the same amount of resources we can simulate 

ecological dynamics on 7.3 million acres as we can on 100 acres since the time 

required to code and create a vetted STSM would be the same or similar.   
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Figure 31. Extent of the largest ES in the United States.  The ES is R077CY022TX and covers at 

least 7 million acres.  

 

2.0.4 Implications 

 

This assessment of the arrangement and complexity of ES’s within the context of LANDFIRE’s 

BPS provides badly needed insight to the possibility of improving ecological modeling in 

rangelands for the purposes of fire management. Using the analyses and underlying databases we 

created can assist fire managers and modelers in designing a national strategy for updating the 

static LANDFIRE fuel maps to be more realistic after wildfire and in areas where grazing 

intensity is quantified across the landscape.  In addition, the modeling conducted using the 

prototype ES above indicates that there is significant potential for linking the RVS with ST-SIM 

for quantitative simulation modeling and rich characterization of fuelbed elements. The modeling 

process, when properly calibrated, yields realistic results and can be applied through space and 

time in across the range of observed growing conditions in a spatially explicit manner.  As a 

result, we suggest that fire managers and national fire leadership should consider this type of 

strategy for managing any broad scale characterization of fuel models across the landscape each 

year.  Presently, in most non-forest landscapes in the LANDFIRE fuel datasets remain static after 

a fire and “stuck” in an herbaceous state.  This is not always a bad assumption but it is overly 

simplistic and can easily and quickly be fixed. Another benefit of this project is the 

demonstration of the use of simulation modeling with ES’s as part of a national strategy for fuel 

treatment effectiveness, even for herbivory as a treatment option. This kind of simulation for 

grazing has not been applied at meaningful scales in the past or the present but the ability 

certainly exists presently.  

 

Given advances in technology and the advancement of programs like the RVS and ST-SIM, 

large landscapes can be simulated and richly quantified in a cost effective manner. For example, 



61 
 

it is estimated that a given ES costs between 8 and 24 hours (but can be much shorter where 

redundancies between ES descriptions exist) to make available in a simulation environment. As a 

result of this project we have demonstrated that some ES’s can be used to simulate dynamics on 

millions of acres.  So, for a minimal amount of resources the framework for national simulation 

of ecological dynamics and fuelbed properties can be developed. The macro-scale view of this 

process reveals several steps towards developing a national level simulation system for 

evaluating treatment effectiveness and ecological response.  These are represented in 6 steps 

below: 

1) Get all ecological sites to cover at least 90% of each BPS (separating signal form 

noise ecologically, thematically, and economically). From these ES’s collapse to 

disturbance response groups such as those developed in Nevada by Dr. Tamzen 

Stringam. This will permit great economies of scale and should provide regionally 

realistic results. This makes sense in a national framework especially since if, for 

example, two different sites are occupied Wyoming big sagebrush, they will response 

reasonably somewhat similarly if other factors are equal. As a result it makes sense to 

collapse these state-transition models to one.  

2) Code each of the unique ES’s in ST-SIM and prepare workshops to add nuances to 

models where they might not exist in the vetted ES description.  

3) Gather all data from every reasonable kind that could be used for calibration and 

validation. Data from remote sensing (to quantify post-fire recovery and other 

attributes), Long Term Ecological Research (LTER) vegetation composition, 

structure, and production data. Cross – walk to each ES to which they correspond. 

4) Use RVS growing condition index for driving simulations.  These were developed 

from observed precipitation and vegetation growth patterns and are spatially explicit.  

However, other types of climate scenarios could be used (e.g. climate change 

scenarios). 

5) Quantify current conditions describing vegetation structure, composition, and 

production.  A good starting point for this is the LANDFIRE Existing Vegetation 

Type, Height, and Cover (EVT, EVH, and EVC respectively).  

6) Create regionally appropriate “what if” management questions. For example, we may 

wish to find treatment designs that optimize abundance of forbs and sagebrush cover 

in support of sage grouse conservation.  

 

OBJECTIVE 3:  Developing Understory Predictive Equations 

 

3.0.1 Introduction 

Numerous ecological studies have focused on better understanding how overstory and understory 

vegetation interact with one another in forested environments.  It has been long understood that 

these interactions are both very complex and dynamic, and can have potentially profound effects 

on the composition, structure, and productivity of understory vegetation. Considerable 

silvicultural research in the past century has revealed the effects of overstory tree density upon 

understory vegetation production through various management interventions such as thinning, 

prescribed burning, and wildland fire. Enhancement of understory vegetation production has 

been achieved in many of these studies by strategic removal of overstory trees through these 

management practices.   
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Understanding the effects of overstory structure and density upon understory vegetation also 

contributes to a better understanding of understory fuel loading and carbon stocks, both of which 

are a function of understory production. Such information is useful for fuel modeling purposes, 

which forecast both fire behavior and severity, and estimate biomass accumulation. Taken 

together, the prediction as to how forest understory vegetation will change in response to 

proposed management, disturbance, and natural succession is a paramount endeavor in modeling 

forest change through time. One such model, developed by the USFS in the early 1980s, is the 

Forest Vegetation Simulator (FVS), which consists of a family of forest growth simulation 

models based on decades of forestry research and experience and seeks to simulate a broad range 

of silvicultural treatments. It addresses the effects of thinning, fire, insect and disease, and 

climate upon forest growth and yield, while simulating calibrated treatments and disturbances 

over distinct geographical regions throughout the United States.  

One current and particular need in the FVS model is the estimation of understory vegetation 

biomass accumulation and production as a function of overstory attributes. We addressed this 

need by examining the relationship between overstory attributes and understory vegetation and 

developing predictive models to estimate vegetation height and cover, and consequently biomass 

accumulation.  Our approach was that of a data mining study and we broadly considered many 

public forest datasets for suitability in our model development before selecting one national 

dataset with sufficiently collected overstory and understory data suitable to our task. 

3.0.2 Methods 

3.0.2.1 Databases 

We used FIA (Forest Inventory and Analysis) data for our study since it contains a large 

assemblage of measured overstory and understory vegetation attributes suitable to our task of 

understanding how understory vegetation varies with overstory components. It also represents a 

long term and systematic plot framework over the entire U.S. that is measured and remeasured 

consistently over time. There are an estimated 125,000 permanent plots nationwide representing 

approximately one plot for every 6,000 acres (Woodall et al., 2010).  A further advantage is that 

all FIA data is thoroughly checked and validated for quality and accuracy to within strict 

tolerances and standards, making it one of the most rigorously collected and maintained forest 

inventory databases in the world. 

FIA data was obtained from two sources covering the western contiguous United States. First, 

plot data from the Pacific Northwest (PNW) FIA Region (Washington, Oregon, and California) 

were obtained directly through FIA as a ready-made Access database called the 2011 PNW 

FIADB Annual Inventory Database (available at: http://www.fs.fed.us/pnw/rma/fia-

topics/inventory-data/index.php).  Second, plot data from the Interior West FIA Region (IW-

FIA) (Arizona, Colorado, Idaho, Montana, Utah, New Mexico, Nevada, Utah, and Wyoming) 

were obtained directly through their public website (available at: http://apps.fs.fed.us/fiadb-

downloads/datamart.html) as CSV files. These were subsequently imported into both Microsoft 

Access and Excel (MS Office 2010) as tables where all later queries and attribute calculations 

were conducted. 

 

http://www.fs.fed.us/pnw/rma/fia-topics/inventory-data/index.php
http://www.fs.fed.us/pnw/rma/fia-topics/inventory-data/index.php
http://apps.fs.fed.us/fiadb-downloads/datamart.html
http://apps.fs.fed.us/fiadb-downloads/datamart.html
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3.0.2.2 Plot description 

The current national standard FIA plot design consists of 4 circular subplots with 3 subplots 

concentrically arranged around a single center subplot at a predetermined distance and azimuth 

(Fig. 32). Each subplot has a 24-foot radius (approximately 1/24 acre) where trees greater than or 

equal to 5” DBH (diameter at breast height) are measured. Within each subplot is a nested 6.8 

foot radius microplot (1/300 acre) for measurement of seedlings and saplings between 1”and 4.9” 

DBH. Understory vegetation is measured on each entire subplot in an ocular fashion. For very 

large diameter trees exceeding a predetermined diameter threshold, an optional 58.9-foot radius 

(1/4 acre) macroplot is also used (FIA National Core Field Guide, 2014).  

3.0.2.3 Data screening  

Prior to the adoption of the current national fixed-plot radius design, FIA implemented many 

other sample designs, including variable-radius ones that were measured on a periodic basis. We 

decided to use the current design for its measurement consistency and ease of scalability. The 

current inventory design is also annual, in that plots within a sampling panel are measured on an 

annual, instead of on a periodic basis, which was the case with the earlier inventory. The annual 

inventory design for western states was initiated on an individual state basis starting in 2000 

(Woudenberg et al., 2010).  The historical range for all available data used in this study is from 

2000-2012, with the number of data collection years for most states varying between 9 to 13 

years.  The notable exception here is with the PNW data, in which only 1 year could be used due 

to inconsistent vegetation measurement protocols (described below). 

We prioritized forest types within our FIA databases according to ones commonly found 

throughout the western U.S. and based our selection using LANDFIRE’s Existing Vegetation 

Type (EVT) taken from NatureServe's Ecological Systems classification (Comer et al., 2003). 

We chose EVTs with the largest extents and ones reflecting our combined knowledge of these 

systems. We then cross-walked them to their FIA Forest Type equivalent (Table 1) according to 

one developed internally between FIA and LANDFIRE. These were ultimately cross-walked to 

Douglas-fir, lodgepole pine, ponderosa pine, and grand fir FIA forest types, which are based on 

types described by the Society of American Foresters (Eyre, 1980). 

We further delineated annual inventory plots comprising only one forested condition, that is, 

plots containing single uniform stand conditions such as tree density, forest type, and stand size 

class, etc. We decided this would reduce variability and minimize any edge effects that might be 

present with more than one forested condition on a given plot. Plots with recently cleared 

overstories and with complete and consistent vegetation measurements on all 4 subplots were 

also included.  Restricting plots in these ways also facilitated the upward scaling of measured 

attributes for subsequent analysis. In the end, we identified a total of 6,716 plots in twelve 

western states for our analysis (Table 1). 

3.0.2.4 Dependent/independent variables 

Our goal was to determine how understory cover and height varied with overstory conditions. 

Thus, our independent variables for this study consisted of those attributes most relevant for 

describing overstory conditions as they might influence understory vegetation. These included 

plot-, condition-, subplot-, and tree-level measurements that FIA routinely collects at these 
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measurement scales on each plot. Similarly, for our response variables, we sought like attributes 

that characterized understory vegetation abundance, which are measurements carried out at the 

subplot level. Data tables from both FIA databases were screened for attribute and measurement 

consistency, and their ecological relevance in describing both overstory and understory 

conditions evaluated.  We identified 30 measured attributes as important independent variables 

(Tables 2a-b) for predicting understory vegetation growth and abundance. These included several 

regional variables collected within each of the two FIA regions. In addition, 18 derived variables 

were calculated from tree-based measured ones based both on their perceived and understood 

importance in characterizing overall stand structure and effects on understory vegetation levels 

(Tables 2a-b).  

We also obtained an additional 25 variables from an FIA-developed model that calculates 

overstory canopy cover for FIA plots using individual plot tree information (Table 2c). FIA does 

not generally collect measurements of canopy cover and this is an important stand characteristic 

that affects understory vegetation (Toney RMRS P-56, 2008). Other associated variables that 

were calculated by this model from FIA tree information were also included in our analyses. In 

total, 73 independent variables, both measured and derived, were included in our analysis 

(Tables 2a-c). 

For our dependent variables describing understory vegetation, we used attributes of height and 

percent cover by vegetation lifeform to broadly characterize measured understory conditions 

(Table 2d). FIA collects vegetation height and cover for 4 commonly recognized lifeforms (small 

(tally) trees, shrubs, forbs, and grasses). However, due to inconsistent measurement protocols of 

understory vegetation for most years of the PNW data (2001-2011), we could only use the last 

year of data (2011) that was provided, since the national measurement protocols for understory 

vegetation were not adopted until then.  This resulted in only 362 single condition PNW plots 

available for analysis (Table 1). This was not the case with the IW-FIA data where all understory 

vegetation was either consistently measured or revised appropriately according to national 

protocols to allow for between-year comparisons. In the end, we determined 8 response variables 

representing height and percent cover for each lifeform for each dataset (Table 2d).  

3.0.2.4.1 Scaling variables 

1) Independent variables - Once all selected attributes were assessed for their overall 

suitability, we determined that the plot level was the most appropriate sampling unit by 

which to conduct our analyses. This meant that all variables measured at scales below 

this required upward scaling. These included ones that were collected at the individual 

tree- and subplot-levels. In many cases, scaling was achieved by simply taking the mode, 

average, or sum over all tree and subplot measurements within a given plot. However, 

there were several special cases encountered where summarizing measured attributes 

proved more cumbersome, such as aspect and habitat type (see Table 2a). For condition-

level variables, no scaling was needed since our plots represented only single forested 

conditions. 

2) Response variables - Understory vegetation measured in each subplot also needed to be 

scaled differently to the plot level. FIA collects the percent cover for each lifeform at 

each of 5 individual layers. The first 4 layers are separate height classes in feet (0-2, 2.1-

6, 6.1-16, 16.1+) while the 5th layer represents an aerial cover estimate.  In determining 

our estimates of average plot lifeform cover, we used the aerial cover estimate associated 
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with each lifeform for each subplot, which is a top-down view of the vegetation cover 

through all of the layers, thus representing its full cover extent.  By definition, aerial 

cover cannot exceed the sum of all cover measured for individual height layers, but can 

be less. Average plot lifeform cover is then obtained by averaging the aerial percent 

covers for each lifeform over all subplots. 

For calculation of average plot lifeform height, we adopted a simplistic approach to scale 

each lifeform height using a method of cover-weighted averages. This is obtained by first 

calculating a lifeform’s relative cover for each height class layer by summing the total 

lifeform covers over all 4 height layers and then determining the relative proportion of 

cover for each individual height layer. The resulting relative cover proportions, which 

always sum to 1, are then multiplied by their respective height class midpoints to obtain 

its cover-weighted height. These weighted heights are then summed together for each 

lifeform and averaged over each subplot to obtain an overall plot mean. We calculated 

our 8 response variables in this way, consisting of plot average cover-weighted height 

and average percent cover for the 4 lifeforms measured (Table 2d).  

3.0.2.5 Analytical Methods 

We consulted with RMRS statistical staff as to the best approach to take with these data. Since 

we wanted a set of regression equations that predicted each response as a function of the most 

relevant of many predictor variables, we adopted a GLM approach using an automated variable 

selection procedure. Since we also identified 8 response variables for each dataset, a total of 16 

individual models were developed in this way. Several steps were taken to prepare data, 

eliminate variables, and perform regression analyses. 

3.0.2.6 Data Preparation 

The understory response variables representing both percent cover and height were transformed 

prior to variable selection using the following approach to ensure predictions are always between 

0 and 1 for the percentages and greater than 0 for the vegetation heights:  

1) Observations with zero-responses are removed. The remaining responses are then 

transformed as follows such that the resulting range is defined on the interval (−∞,∞): 

a. Responses on the interval (0,1) are logit-transformed as follows: 

𝑧 = 𝑙𝑛 (
𝑦

1 − 𝑦
) 

b. Responses on the interval (0,∞) are log-transformed as follows: 

𝑧 = 𝑙𝑛(𝑦) 

where 𝑦 is the original response. 

2) All 2-way interactions were then created from the input data, resulting in over 10,000 

potential predictors.   

a. For continuous x continuous predictors, the interactions involve the element-wise 

product between two data vectors.  
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b. For factor x continuous predictors, the interactions involve the element-wise 

product of each factor level and the continuous predictor.   

c. For factor x factor predictors, the interactions involve the element-wise products 

of each factor level for both factors. 

The resulting predictor set from the step above includes all main effects and second-order 

interactions. Not all of the predictors are candidates for variable selection due to singularities or 

correlation between pairs and linear combinations of predictors. The predictor set is therefore 

filtered as follows prior to any variable selection: 

a. All columns that represent less than 20% of the responses are removed. This includes 

columns that involve factor levels that represent any classification containing less 

than 20% of the observations. 

b. Columns with zero variation are removed. This includes constant covariates or 

interactions that involve only a single pair of interacted factor levels for the entire 

sample. 

c. Remove one of any pair of predictors with a correlation greater than 0.8 in absolute 

value. The removed predictor is the one with the largest average correlation with all 

other predictors. 

d. Remove any predictors that are linear combinations of other predictors. 

3.0.2.7 Variable Selection 

The first stage of variable selection involves the use of elastic net regularization to isolate a 

subset of potential predictors (Zou and Hastie, 2005). The best model is selected using leave-

one-out cross validation based on a mean squared error loss function. 

The second stage of variable selection involves use of a stepwise selection method based on 

corrected Akaike’s Information Criteria (AICc). The first subset of predictors found by elastic 

net is therefore reduced to a more conservative subset in order to prevent overfitting (Venables 

and Ripley, 2002). 

The resulting subset of predictors is then modeled on the original response scale using a 

Generalized Linear Model that allows for use of appropriate link functions. Responses on the 

interval (0,1) are modeled using a logit-link while responses on the interval (0,∞) are modeled 

using a log-link. By using a GLM, the inverse-linked predictions are free from retransformation 

bias.  

3.0.2.8 Prediction 

1) Define 𝑔(𝑥) as the linear function derived from the selected subset of predictors. The 

function includes an estimated intercept, 𝛽0, along with estimated regression coefficients 

that model the response on the link scale. Linear predictions on the link-scaled response 

are linear functions as follows: 

𝑔(𝑥) = ∑𝛽𝑘𝑥𝑘

𝐾

𝑘=0
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 where 𝑔(𝑥) is the link corresponding to the particular response. 

 

2) In order to predict on the response scale, inverse-link the final prediction functions as 

follows: 

a. For responses on the original scale of (0,1), final prediction function is: 

𝑓(𝑥) =
exp⁡(𝑔(𝑥))

1 + exp⁡(𝑔(𝑥))
 

b. For nonnegative responses on the original scale of (0,∞), the final prediction 

function is: 

𝑓(𝑥) = exp(𝑔(𝑥)) 

All analyses were done using R version 3.1.2 (R development Core Team, 2014) including the 

following libraries: 

a) ade4 

b) BaylorEdPsych 

c) Caret 

d) DAAG 

e) doParallel 

f) ggplot2 

g) glmnet 

h) gtools 

i) Hmisc 

j) MASS 

k) matrixStats 

 

3.03 Results  

All final GLM regression models contained only interaction terms while no main effects were 

evident in any of the models (Tables 3a-b). Final models contained as few as 4 (PNW-

AvgOfWeighted Height FORB) and as many as 33 two-way interaction terms (IW-

AvgOfCOVER PCT GRASS), with only a few variables not significant (P>0.1). Interactions 

were present between many different predictor variables, and consisted of factor-factor, factor-

continuous, and continuous-continuous terms. Regression coefficients estimates for the PNW 
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models ranged from -0.67 to 0.75, and averaged -0.016, excluding intercepts (Table 3a). For the 

IW models, regression coefficient estimates ranged in magnitude from -0.75 to 1.32, and 

averaged 0.005, also excluding intercepts (Table 3b). 

Several similar interaction terms were present in models for both datasets. Elevation and site 

index (ELEV x SICOND) appeared in 4 of the 8 PNW models and also in 4 of the 8 IW models. 

Average crown ratio and total canopy cover (AvgOfCR.x.model_crcov) also appeared in 4 of the 

8 models for each dataset while presence of disturbance and elevation 

(D_DSTRBCD1.0.x.ELEV and D_DSTRBCD2.0.x.ELEV) appeared 2 (PNW) and 3 (IW) times 

for each dataset. Crown class code and average slope (CCLCD_Mode.3.x.AvgOfSLOPE) 

appeared in 4 models for the IW and in 2 models for the PNW dataset.  Forest type and average 

slope (FLDTYPCD.221.x.AvgOfSLOPE) and ownership and presence of disturbance 

(OWNCD.11.x.D_DSTRBCD1.0) both appeared in 2 models for each dataset. Remaining 

relatively frequent variables appearing at least 4 times within an interaction term for the IW 

datasets include elevation (ELEV) forest type (FLDTYPCD), physiographic class 

(PHYSCLCD),  crown class code (CCLCD), site class code (SITECLCD), and presence of 

disturbance (D_DSTRBCD2) and treatment (D_TRTCD1). For the PNW models, average breast 

height age (AvgOfBHAGE) and forest type (FLDTYPCD) each appeared 3 times. 

For the PNW data, 25 predictors out of a possible total of 66 failed to appear in any of the 

models as either main effects or interactions (Table 4). The remaining 41 predictors appeared at 

least once in a model regression term. Of these, 21 variables appeared at least 5 times and 8 

variables appeared at least 10 times in a second order interaction. For the IW data, 33 predictors 

out of a possible total of 72 failed to appear in any of the models. The remaining 39 predictors 

appeared at least once in a model. Of these, 26 variables appeared at least 5 times and 16 

variables appeared at least 10 times in an interaction term.  Three variables appeared more than 

20 times: forest type (FLDTYPCD), elevation (ELEV), and average slope (AvgOfSLOPE).  

Between the two datasets, 19 variables did not appear in either of them. 

Overall, the PNW models performed better for each corresponding lifeform cover and height. 

McFadden statistics, which are goodness of fit measures similar in interpretation to R-squared, 

ranged from 0.22 for average weighted forb height to 0.87 for average tally tree cover (Table 3a). 

For the IW data, McFadden statistics ranged from 0.06 for average weighted forb height to 0.36 

for average weighted shrub height (Table 3b). McFadden goodness of fit measures were higher 

in all corresponding models for the PNW than IW. The differences were smallest in the case of 

average weighted shrub height (0.37 and 0.36) but much higher in the cases of average weighted 

tally tree height and tally tree cover (0.84 and 0.87 vs. 0.21 and 0.30) for PNW and IW models, 

respectively. 

In looking at predicted versus observed plots, better fits are also seen with the PNW data (Fig.’s  

33 a-p).  In most cases, predicted values more closely agreed with observed values for the PNW 

plots more so than with the IW plots, despite the narrower range of cover and heights and the 

much larger sample sizes of the IW data (Fig.’s 34 a-p). For percent cover models in both 

datasets, the most notable departures between observed and predicted were found in the smallest 

cover classes (<5%) where the models generally underpredicted values. For the majority of the 

remaining cover classes greater than about 5% cover, the models tended to overpredict values, 

except for tally tree cover in the PNW dataset, where predictions generally agreed with observed 

values. The worst fitting cover models for each dataset were average forb cover with McFadden 
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values of 0.34 (PNW) and 0.23 for average shrub cover (IW) (Tables 3a and 3b, Fig.’s 33a, 33b, 

34e, and 34f). The best fitting cover models for each dataset were both for average tally tree 

cover with McFadden values of 0.87 (PNW) and 0.3 (IW)(Tables 3a and 3b, Fig.’s 33g, 33h, 

34g, and 34h).  

The lifeform height models tended to overpredict values for height classes greater than 1 foot, 

but tended to underpredict vegetation heights approximating 1 foot, with the exception of tally 

tree heights, where predictions generally agreed with observed values.  Heights less than 1 foot 

for all lifeforms and greater than 2 feet for forbs and grasses were rarely predicted at all, possibly 

due to a lack of observations in these height classes. Similarly, heights greater than 5-6 feet for 

shrubs and greater than 12 feet for tally trees (IW only) were also rarely predicted, also possibly 

due to a lack of observations. Overall, the PNW lifeform height models represented better fits to 

observed data than did the IW models. The worst fitting height models for each dataset were 

both for average weighted forb height with McFadden values of 0.22 (PNW) and 0.06 (IW) 

(Tables 3a and 3b, Fig.’s 33i, 33j, 34i, and 34j). The best fitting height models for each dataset 

were for average tally tree height with McFadden values of 0.87 (PNW) and 0.36 for average 

weighted shrub height (IW) (Tables 3a and 3b, Fig.’s 33o, 33p, 34m, and 34n).  

3.0.4 Discussion and Future Work 

Given that only interaction terms were present in all of the models without any main effects may 

suggest that had 3-way interactions been included, then perhaps they would have appeared in 

these models as well. Interactions occur when one explanatory variable influences how another 

explanatory variable affects the response variable. More specifically, for continuous x 

continuous interactions, it means that the slope of one continuous variable on the response 

variable changes as the values on a second continuous variable change. For factor x continuous 

interactions, it means that the continuous variable is only affected by the level of the factor. For a 

factor x factor interaction, it means the response is only affected by the condition where both 

factor levels exist.  

All models contained numerous combinations of the above kinds of interactions between 

continuous and factor variables, making their interpretation both cumbersome and difficult. This 

is suggestive of the complexity and interaction of many attributes needed to predict understory 

vegetation and it is perhaps not surprising that these many variables often interact with one 

another and depict complex relationships. Most of the variables and especially those most 

frequently occurring in the models are ones that FIA readily measures or that can be easily 

computed from them. For forest simulation models such as FVS, which incorporates FIA data for 

its predictions, this could signify a first attempt to integrate FIA data to uncover these 

relationships in making understory vegetation cover and height predictions. The next step for 

successful integration of this information into FVS is to identify the best combination of 

predictive variables that FVS has readily available and then possibly simplify the equations 

presented here to accommodate the logic represented in this report.  

3.0.5 Overall feasibility of simulating understory vegetation in FVS using FIA data?  

One of the likely approaches for model improvement lies with stratification. The relatively 

poorer predictive models for the IW data could be due, in large part, to the much larger 

geographical area that it represents in combination with the more moisture-limited habitats. 
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Stratification could occur geographically based on some measure of climate regime which may 

not be evident within our selected attribute of habitat types. For example, the Douglas-fir type 

that we identified has such a broad ecological amplitude that differences in climate may not be 

readily discernible. To a lesser but still possibly significant degree this may be also the case with 

lodgepole pine, another very broadly distributed conifer.   

Another acknowledged limitation in these models is the difficulty in obtaining precise height and 

cover data for understory vegetation. For this study, height class midpoints were used since 

actual heights were not collected and are not part of the current measurement protocol. Ocular 

estimates of vegetation cover over an entire subplot are also relatively subjective and vary from 

observer to observer, despite many historical efforts to correct for this. In both of these 

dimensions, more precise measurements would likely improve the predictive ability of these 

models. 

There also opportunities for additional variable selection and further tweaking of the current 

models. For example, variable selection could include additional removal of predictors deemed 

of even lesser importance as a result of this analysis or be recoded into possibly more meaningful 

categories.   
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3.0.8 Appendices 

Appendix 1. A list of BPS’s for which succession is either fully or partly simulated, depending 

on several factors, the most important of which is the presence of trees in any of the 3 or less 

successional stages. To learn more about any of the BPS’s on the list visit 

http://www.landfire.gov/national_veg_models_op2.php.  In this table, Limited Successional 

Dynamics means that succession will stop being simulated when trees enter the system, and a 

“Y“ value indicates this condition.  The attribute “Multiple Cohort Types”, indicates that a BPS 

has more than one kind of successional trajectory depending on where the BPS is located in 

space. For example, central mixed grass prairie can have multiple successional trajectories 

depending on where the site is located as denoted by the “Y” in the “Multiple Cohort Types” 

column.  

BpS Name 

 

Limited 
Successional 

Dynamics1 

Multiple  
Cohort  

Types 

Apacherian-Chihuahuan Mesquite Upland Scrub N Y 

Apacherian-Chihuahuan Semi-Desert Grassland and Steppe N Y 

Atlantic Coastal Plain Peatland Pocosin and Canebrake Y N 

California Central Valley and Southern Coastal Grassland N N 

California Lower Montane Blue Oak-Foothill Pine Woodland and Savanna Y Y 

California Maritime Chaparral Y N 

California Mesic Chaparral Y N 

California Mesic Serpentine Grassland N N 

California Montane Jeffrey Pine(-Ponderosa Pine) Woodland Y Y 

California Montane Woodland and Chaparral Y Y 

California Northern Coastal Grassland N N 

California Xeric Serpentine Chaparral Y N 

Central Mixedgrass Prairie N Y 

http://dx.doi.org/10.1007/s10661-010-1644-8
http://www.landfire.gov/national_veg_models_op2.php
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Central Tallgrass Prairie N N 

Chihuahuan Creosotebush Desert Scrub N N 

Chihuahuan Grama Grass-Creosote Steppe N N 

Chihuahuan Gypsophilous Grassland and Steppe N Y 

Chihuahuan Loamy Plains Desert Grassland N N 

Chihuahuan Mixed Desert and Thorn Scrub N Y 

Chihuahuan Mixed Desert Shrubland N N 

Chihuahuan Mixed Salt Desert Scrub Y Y 

Chihuahuan Sandy Plains Semi-Desert Grassland N Y 

Chihuahuan Stabilized Coppice Dune and Sand Flat Scrub N Y 

Chihuahuan Succulent Desert Scrub N N 

Chihuahuan-Sonoran Desert Bottomland and Swale Grassland N Y 

Chihuahuan-Sonoran Desert Bottomland and Swale Grassland - Alkali Sacaton N N 

Chihuahuan-Sonoran Desert Bottomland and Swale Grassland - Tobosa Grassland N N 

Colorado Plateau Blackbrush-Mormon-tea Shrubland N N 

Colorado Plateau Mixed Low Sagebrush Shrubland N N 

Colorado Plateau Pinyon-Juniper Shrubland Y Y 

Colorado Plateau Pinyon-Juniper Woodland Y Y 

Columbia Basin Foothill and Canyon Dry Grassland N Y 

Columbia Basin Palouse Prairie N Y 

Columbia Plateau Low Sagebrush Steppe N Y 

Columbia Plateau Scabland Shrubland N Y 

Columbia Plateau Steppe and Grassland N Y 

Columbia Plateau Western Juniper Woodland and Savanna Y Y 

Edwards Plateau Limestone Savanna and Woodland Y N 

Edwards Plateau Limestone Shrubland N N 

Florida Dry Prairie Y N 

Florida Peninsula Inland Scrub Y N 

Great Basin Pinyon-Juniper Woodland Y Y 

Great Basin Semi-Desert Chaparral N N 

Great Basin Xeric Mixed Sagebrush Shrubland Y Y 

Great Plains Prairie Pothole N N 

Inter-Mountain Basins Big Sagebrush Shrubland Y Y 

Inter-Mountain Basins Big Sagebrush Shrubland - Basin Big Sagebrush N N 

Inter-Mountain Basins Big Sagebrush Shrubland - Wyoming Big Sagebrush N N 

Inter-Mountain Basins Big Sagebrush Steppe N Y 

Inter-Mountain Basins Curl-leaf Mountain Mahogany Woodland and Shrubland Y Y 

Inter-Mountain Basins Greasewood Flat N Y 

Inter-Mountain Basins Juniper Savanna Y Y 

Inter-Mountain Basins Mat Saltbush Shrubland N Y 

Inter-Mountain Basins Mixed Salt Desert Scrub N Y 

Inter-Mountain Basins Mixed Salt Desert Scrub - North N N 

Inter-Mountain Basins Mixed Salt Desert Scrub - South N N 

Inter-Mountain Basins Montane Sagebrush Steppe Y Y 

Inter-Mountain Basins Montane Sagebrush Steppe - Low Sagebrush N N 

Inter-Mountain Basins Montane Sagebrush Steppe - Mountain Big Sagebrush Y N 

Inter-Mountain Basins Semi-Desert Grassland N Y 

Inter-Mountain Basins Semi-Desert Shrub-Steppe N Y 

Madrean Encinal Y Y 

Madrean Juniper Savanna Y N 

Madrean Oriental Chaparral N N 

Madrean Pinyon-Juniper Woodland Y N 

Mediterranean California Alpine Dry Tundra N N 

Mediterranean California Mesic Serpentine Woodland and Chaparral Y N 

Mediterranean California Subalpine Meadow N Y 

Mogollon Chaparral N Y 

Mojave Mid-Elevation Mixed Desert Scrub N N 
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North Pacific Alpine and Subalpine Dry Grassland N N 

North Pacific Montane Grassland N N 

North-Central Interior Sand and Gravel Tallgrass Prairie Y N 

Northern and Central California Dry-Mesic Chaparral N N 

Northern Rocky Mountain Lower Montane-Foothill-Valley Grassland N Y 

Northern Rocky Mountain Montane-Foothill Deciduous Shrubland Y Y 

Northern Rocky Mountain Subalpine-Upper Montane Grassland Y Y 

Northern Tallgrass Prairie Y Y 

Northwestern Great Plains Mixedgrass Prairie N Y 

Northwestern Great Plains Shrubland N N 

Rocky Mountain Alpine Fell-Field N N 

Rocky Mountain Alpine Turf N N 

Rocky Mountain Foothill Limber Pine-Juniper Woodland Y Y 

Rocky Mountain Gambel Oak-Mixed Montane Shrubland N N 

Rocky Mountain Gambel Oak-Mixed Montane Shrubland  - Continuous N N 

Rocky Mountain Gambel Oak-Mixed Montane Shrubland - Patchy N N 

Rocky Mountain Lower Montane-Foothill Shrubland Y Y 

Rocky Mountain Lower Montane-Foothill Shrubland - No True Mountain Mahogany N N 

Rocky Mountain Lower Montane-Foothill Shrubland - True Mountain Mahogany N N 

Rocky Mountain Subalpine-Montane Mesic Meadow N Y 

Sierra Nevada Alpine Dwarf-Shrubland N N 

Sonora-Mojave Creosotebush-White Bursage Desert Scrub N N 

Sonora-Mojave Mixed Salt Desert Scrub N N 

Sonora-Mojave Semi-Desert Chaparral N N 

Sonoran Granite Outcrop Desert Scrub Y N 

Sonoran Mid-Elevation Desert Scrub N Y 

Sonoran Paloverde-Mixed Cacti Desert Scrub Y N 

South Texas Lomas N Y 

South Texas Sand Sheet Grassland N N 

Southeastern Great Plains Tallgrass Prairie Y N 

Southern Blackland Tallgrass Prairie Y N 

Southern California Coastal Scrub N N 

Southern California Dry-Mesic Chaparral N N 

Southern Colorado Plateau Sand Shrubland N N 

Southern Rocky Mountain Juniper Woodland and Savanna Y Y 

Southern Rocky Mountain Montane-Subalpine Grassland N Y 

Southern Rocky Mountain Pinyon-Juniper Woodland Y Y 

Southern Rocky Mountain Ponderosa Pine Savanna Y Y 

Tamaulipan Calcareous Thornscrub N N 

Tamaulipan Clay Grassland N N 

Tamaulipan Mixed Deciduous Thornscrub Y N 

Tamaulipan Savanna Grassland Y N 

Texas-Louisiana Coastal Prairie N Y 

Texas-Louisiana Saline Coastal Prairie N N 

West Gulf Coastal Plain Northern Calcareous Prairie Y N 

West Gulf Coastal Plain Southern Calcareous Prairie Y N 

Western Great Plains Depressional Wetland Systems N Y 

Western Great Plains Depressional Wetland Systems - Playa N N 

Western Great Plains Depressional Wetland Systems - Saline N N 

Western Great Plains Foothill and Piedmont Grassland N N 

Western Great Plains Mesquite Woodland and Shrubland Y Y 

Western Great Plains Sand Prairie N Y 

Western Great Plains Sandhill Steppe N Y 

Western Great Plains Shortgrass Prairie N Y 

Western Great Plains Tallgrass Prairie Y N 

Wyoming Basins Dwarf Sagebrush Shrubland and Steppe N Y 

1. Y is yes, and N is no.  
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Appendix 2. Appendices for Tables and Figures of the Overstory / understory project.   

 

 

Figure 32. FIA National Annual Inventory Plot Design. 
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Table 1. FIA single condition plot summary for Interior West (IW) and Pacific Northwest 

(PNW) datasets (2011 data for PNW only). 

 

FIA 

Forest 

Type 

Existing 

Vegetation 

Type* (EVT) 

# Plots 

(single 

condition) 

# Subplots 

(single 

condition) 

# Plots with 

Live Overstory 

and Complete 

Understory 

Vegetation 

# Plots with 

Complete 

Understory 

Vegetation ** 

Interior West 

(2000-2012) 

      

Douglas-fir 201 2045/2166/2051 2,529 10,116 2,438 2,529 

ponderosa pine  221 2053/2054 2,001 8,004 1,910 2,001 

grand fir 267 2047 332 1,328 327 332 

lodgepole pine 281 2050 1,492 5,968 1,359 1,492 

       

Total - - 6,354 25,416 6,034 6,354 

       

Pacific Northwest 

(2011 only) 

      

Douglas-fir 201 2045/2166/2051 203 812 191 203 

ponderosa pine  221 2053/2054 95 380 85 95 

grand fir 267 2047 27 108 27 27 

lodgepole pine 281 2050 37 148 35 37 

       

Total - - 362 1,448 338 362 

Combined Total      6,716 

* EVT descriptions are as follows: 2045 - Northern Rocky Mountain Dry-Mesic Montane Mixed 

Conifer Forest; 2166 - Middle Rocky Mountain Montane Douglas-fir Forest and Woodland ; 

2047 - Northern Rocky Mountain Mesic Montane Mixed Conifer Forest; 2051 - Southern Rocky 

Mountain Dry-Mesic Montane Mixed Conifer Forest and Woodland; 2050 - Rocky Mountain 

Lodgepole Pine Forest; 2053 - Northern Rocky Mountain Ponderosa Pine Woodland and 

Savanna; 2054 - Southern Rocky Mountain Ponderosa Pine Woodland (Comer et al., 2003) 

** denotes all 4 subplots measured 
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Table 2a. Independent variables for IW and PNW datasets measured or derived from plot-, 

condition-, and subplot- level FIA measurements. NA denotes that no scaling to the plot level 

was needed and/or the actual measured values were used. 

# Variable Name Description Variable 

Type 

Scaling 

Method 

1 ELEV Plot elevation above sea level (in feet) (NAD 83 

datum). 

Continuous NA 

2 TOPO_POSITION_PNW  

(PNW only) 

Plot topographic position on landscape (9 classes). Categorical NA 

3 SITECLCD Site productivity class code (7 classes). Categorical NA 

4 D_DSTRBCD1 Indicator variable for disturbance code #1 for 

condition, 0 indicates no disturbance 

observed/evident, and is populated for all forested 

plots. A code indicating the kind of disturbance 

occurring since the last measurement or within the 

last 5 years for new plots. The area affected by the 

disturbance must be at least 1 acre in size. 

Categorical NA 

5 D_DSTRBCD2 Indicator variable for disturbance code #2 for 

condition, 0 indicates no disturbance 

observed/evident. A code indicating the kind of 

disturbance occurring since the last measurement 

or within the last 5 years for new plots. The area 

affected by the disturbance must be at least 1 acre 

in size.  

Categorical NA 

6 FLDTYPCD FIA field forest type code that is assigned in the 

field and based on the tree species or species 

groups forming a plurality of all live stocking 

(DF=201, 221=PP, 267=GF, 281=LP). 

Categorical NA 

7 HT_Series This represents the truncation of measured habitat 

types (series/type/phase) to the series level only. 

This was done to increase the number of 

observations per habitat type level. 

Categorical NA 

8 OWNCD Ownership code for the condition. See FIA 

National Core Field Gide for definitions.  

Categorical NA 

9 PHYSCLCD Physiographic class code for the condition within 

xeric, mesic, and hydric categories. It is a coded 

measure of available moisture to stands as affected 

by topographic landform. 

Categorical NA 

10 SICOND Site index for the condition using 50, 80 or 100 

years as the base age (see SIBASE). Site index is 

the estimated/expected average height of 

dominant/codominant trees at the specified base 

age. 

Continuous NA 

11 FLDSZCD Field stand-size class code (codes 0-6). A coded 

field measure of predominant diameter class of 

live trees. 

Categorical NA 

12 STDSZCD Stand-size class code (4 codes). A coded 

classification of the predominant diameter class of 

live trees in the condition using an algorithm. 

Categorical NA 
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13 D_TRTCD1 Indicator variable for stand treatment 1 code. A 

code indicating the type of stand treatment that has 

occurred since the last measurement or within 5 

years for new plots. The treatment must be >=1 

acre (0 indicates no observable treatment). 

Categorical NA 

14 D_TRTCD2 Indicator variable for stand treatment 2 code. A 

code indicating the type of stand treatment that has 

occurred since the last measurement or within 5 

years for new plots. The treatment must be >=1 

acre (0 indicates no observable treatment). 

Categorical NA 

15 LIVE_CANOPY_CVR_PCT  

(IW only) 

The percentage of live canopy cover for the 

condition including live tally trees, saplings, and 

seedlings. 

Continuous NA 

16 LIVE_MISSING_CANOPY 

_CVR_PCT (IW only) 

Live plus estimated missing canopy cover for the 

condition of missing live and dead tally trees, 

saplings and seedling due to disturbance, 

treatment, etc., based on observation, stand 

history, and historical aerial imagery. This 

percentage cannot exceed 100%. 

Continuous NA 

17 Eastness (derived) Subplot aspect (n=4), in degrees, that is averaged 

for the plot and transformed into eastness 

(sin[aspect]). See Zar 1999 for methods. 

Continuous Circular 

Average 

18 Northness (derived) Subplot aspect (n=4), in degrees, that is averaged 

for the plot and transformed into northness 

(cos[aspect]). See Zar 1999 for methods. 

Continuous Circular 

Average 

19 Final_Mean_Aspect 

(derived) 

Transformation of average eastness and northness 

components into mean aspect (in degrees). See Zar 

1999 for methods. 

Continuous Circular 

Average 

20 Coded_Aspect  

(derived) 

Reclassification of Final_Mean Aspect into 8 

groups starting with 337.5 degrees and containing 

45 degree classes ( e.g. 1= 337.5-22.5 degrees, 2= 

22.5-67.5 degrees,….) 0= flat areas. 

Categorical NA 

21 Cardinal_Direction (derived) Recoding of Coded_Aspect into 8 cardinal 

directions, including flat areas. 

Categorical NA 

22 AvgOfSLOPE Mean slope for plot after averaging over each 

subplot (n=4) (in percent). 

Continuous Average 

 

Table 2b. Independent variables for IW and PNW datasets measured or derived from tree and 

seedling-level FIA measurements. NA denotes that no scaling to the plot level was needed and/or 

the actual measured values were used. 

# Variable Name Description Variable 

Type 

Scaling 

method 

23 CountOfTREE Number of sampled trees per plot greater than 

or equal to 1" DBH and used for calculation of 

tree level attributes. Only live trees are 

considered. 

Continuous Sum 

24 SumOfTPA_UNADJ Trees per acre unadjusted for all live trees 1" or 

greater DBH that are measured on microplots, 

subplots, and macroplots (PNW only), and 

summed over all trees for plot-level estimate. 

Continuous Sum 
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25 AvgOfDIA Average diameter of all measured live trees 

greater than or equal to 1"DBH (in inches). 

Continuous Average 

26 AvgOfACTUALHT Average of actual tree height (ground to 

existing tip plus estimated lengths of broken 

tops)(in feet). Averaged for measured trees only 

greater than or equal to 1" DBH. 

Continuous Average 

27 AvgOfBHAGE Average of tree breast height age, in years, 

collected for a subset of measured live trees 

greater than or equal to 1" DBH for each 

species, diameter class, and crown class (PNW). 

Continuous Average 

28 CCLCD_Mode Mode of tree crown class for measured trees 

greater than or equal to 1" DBH. 

Categorical Mode 

29 AvgOfCR Average of tree compacted crown ratio, in 

percent, for measured live trees greater than or 

equal to 1" DBH. 

Continuous Average 

30 SumOfBASAL_AREA Sum of basal area per tree of measured live 

trees (in square feet) greater than or equal to 

1"DBH. 

Continuous Sum 

31 SumOfVOLCFNET Sum of net tree cubic volume, in cubic feet, for 

each sample tree greater than or equal to 5" 

DBH, without rotten, cull or defected wood. 

Continuous Sum 

32 SumOfVOLCFGRS Sum of gross tree cubic volume, in cubic feet, 

for each sample tree greater than or equal to 5" 

DBH, with rotten, cull or defected wood. 

Continuous Sum 

33 AvgOfUNCRCD (IW only) Average of uncompacted live crown ratio, in 

percent. Measured for sampled live trees greater 

or equal to 5" DBH and determined by dividing 

the live crown length by the actual height. This 

is a measure of tree crown vigor. 

Continuous Average 

34 SumOfSeedling_TPA_UNADJ Sum of number of seedling trees per acre 

(unadjusted) from microplot (1/300 acre) 

measurements where 1 tree= 74. 965282 TPA. 

Continuous Sum 

35 SumDBH_AC Sum of live tree diameters over all subplots for 

measured trees greater than or equal to 1" DBH 

and expanded based on sample plot size 

(inches/acre). 

Continuous Sum 

36 QMD Quadratic mean diameter or diameter of a tree 

of average BA for plot, in inches, used for 

calculation of SDI. Only live measured trees 

greater than or equal to 1" DBH are considered. 

See Curtis and Marshall 2000. 

Continuous NA 

37 BA_AC Independently calculated basal area, in square 

feet, per acre of live trees greater than or equal 

to 1"DBH. 

Continuous NA 

38 VOLCFNET_AC Net tree cubic volume per acre, in cubic 

feet/acre, for each sample tree greater than or 

equal to 5" DBH, without rotten, cull or 

defected wood. 

Continuous NA 

39 VOLCFGRS_AC Gross tree cubic volume per acre, in cubic 

feet/acre, for each sample tree greater than or 

equal to 5" DBH, without rotten, cull or 

defected wood.  

Continuous NA 
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40 SDI_10 Stand Density Index (Reineke) in TPA based on 

a stand QMD of 10" DBH. This is a relative 

measure of stand density/competition and 

includes trees greater than or equal to 1" DBH. 

See Long and Shaw 2010. 

Continuous NA 

41 Max_Forest_SDI Maximum Stand Density Index, in trees per 

acre, based on predetermined values for each 

forest type and used in calculation of other SDI 

variables below, such as the percentage of 

actual SDI to maximum SDI that a plot 

represents of a given forest type. See Witt et al. 

2012. 

Categorical NA 

42 PCT_Max_Occupancy_10 Percent maximum tree occupancy based on 

SDI_10, (QMD=10" DBH) using actual TPA 

(actual plot TPA/SDI_10) and includes live 

trees greater than or equal to 1" DBH. 

Continuous NA 

43 PCT_Max_Forest_SDI_10 Percent tree occupancy based on maximum SDI 

for forest type using SDI_10, 

(=SDI_10/Max_Forest_SDI) and includes live 

trees greater than or equal to 1" DBH. 

Continuous NA 

44 PCT_Max_Forest_SDI Percent tree occupancy based on maximum SDI 

for forest type (=actual plot 

TPA/Max_Forest_SDI) and includes live trees 

greater than or equal to 1" DBH. See Long and 

Shaw 2010. 

Continuous NA 

45 SDI_sum Stand Density Index (Reineke) in TPA based on 

the summation method for uneven aged stands 

and includes live trees greater than or equal to 

1" DBH. See Long and Shaw 2010. 

Continuous NA 

46 PCT_Max_Occupancy_sum Percent maximum tree occupancy based on 

SDI_summation method (=actual plot 

TPA/SDI_sum) and includes live trees greater 

than or equal to 1" DBH. 

Continuous NA 

47 PCT_Max_Forest_SDI_sum Percent tree occupancy based on maximum SDI 

for forest type using summation method 

(=SDI_sum/Max_Forest_SDI) and includes live 

trees greater than or equal to 1" DBH. See Long 

and Shaw 2010. 

Continuous NA 

48 SDI_sum_SDI_10 Ratio of the two SDIs as an index of structural 

diversity/even-agedness (=SDI_sum/SDI_10), 

and includes live trees greater than or equal to 

1" DBH. Uneven-agedness increases as the ratio 

decreases from 1. See Long and Shaw 2010. 

Continuous NA 

 

Table 2c. Independent variables for IW and PNW datasets derived from FIA canopy cover 

model (see Toney et al. 2009). NA denotes that no scaling to the plot level was needed and the 

actual calculated values were used. 

# Variable Name Description Variable 

Type 

Scaling 

method 

49 map_crcov_subp Canopy cover, in percent, of live trees greater than or 

equal to 5" DBH. This is computed as the average of 

Continuous NA 
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the 4 subplots. See Toney et al. 2009 for this and all 

remaining variables derived from FIA canopy cover 

model. 

50 map_crcov_micr Canopy cover, in percent, of live sapling trees (1-4.9" 

DBH). This is computed as the average of the 4 

microplots. 

Continuous NA 

51 model_crcov Estimated total canopy cover, in percent, of live trees 

greater than or equal to 1" DBH from subplots, and a 

regression estimate of the sapling component. 

Continuous NA 

52 numTrees Number of live trees on plot greater than or equal to 5" 

DBH and used for Stem Map calculations. 

Continuous NA 

53 meanTreeHt Mean tree height of live trees, in feet, greater than or 

equal to 5" DBH. 

Continuous NA 

54 meanTreeHtBAW Basal area-weighted mean tree height, in feet, of all 

lives trees greater than or equal to 5" DBH. Also 

known as Lorey's mean height which is the sum of 

each tree HT * BA divided by total BA. 

Continuous NA 

55 meanTreeHtDom Mean height, in feet, of canopy dominant/codominant 

live trees greater than or equal to 5" DBH. 

Continuous NA 

56 meanTreeHtDomBAW Basal area-weighted mean height, in feet, of canopy 

dominant/codominant lives trees greater than or equal 

to 5" DBH. Also known as Lorey's mean height which 

is the sum of each tree HT *BA divided by total BA. 

Continuous NA 

57 predomTreeHt Mean height, in feet, of the tallest live trees greater 

than or equal to 5" DBH and greater than or equal to 16 

TPA (arbitrary TPA). 

Continuous NA 

58 numSaplings Number of live saplings in plot (1-4.9" DBH). Continuous NA 

59 meanSapHt Mean height, in feet, of live saplings (1-4.9" DBH). Continuous NA 

60 maxSapHt Maximum height, in feet, of live saplings (1-4.9" 

DBH). 

Continuous NA 

61 standHt Stand height, in feet. StandHt is based on the basal 

area-weighted mean height of trees with greater than or 

5 " DBH and is therefore often the same value as 

meanTreeHtDomBAW. However, it excludes trees 

with intermediate or overtopped crown class codes 

from its calculation.  

Continuous NA 

62 K_6ft Estimate of K Ripley function at 6 feet. This is a 

measure of tree dispersion/clustering. 

Continuous NA 

63 K_8ft Estimate of K Ripley function at 8 feet. This is a 

measure of tree dispersion/clustering. 

Continuous NA 

64 K_10ft Estimate of K Ripley function at 10 feet. This is a 

measure of tree dispersion/clustering. 

Continuous NA 

65 K_12ft Estimate of K Ripley function at 12 feet. This is a 

measure of tree dispersion/clustering. 

Continuous NA 
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66 L_6ft Estimate of L Ripley function at 6 feet. This is a square 

root transformation of K that stabilizes the variance. 

Continuous NA 

67 L_8ft Estimate of L Ripley function at 8 feet. This is a square 

root transformation of K that stabilizes the variance. 

Continuous NA 

68 L_10ft Estimate of L Ripley function at 10 feet. This is a 

square root transformation of K that stabilizes the 

variance. 

Continuous NA 

69 L_12ft Estimate of L Ripley function at 12 feet. This is a 

square root transformation of K that stabilizes the 

variance. 

Continuous NA 

70 G_6ft (IW only) Estimate of nearest neighbor distribution function at 6 

feet. Additional measure of tree dispersion/clustering. 

Continuous NA 

71 G_8ft (IW only) Estimate of nearest neighbor distribution function at 8 

feet. Additional measure of tree dispersion/clustering. 

Continuous NA 

72 G_10ft (IW only) Estimate of nearest neighbor distribution function at 10 

feet. Additional measure of tree dispersion/clustering. 

Continuous NA 

73 G_12ft (IW only) Estimate of nearest neighbor distribution function at 12 

feet. Additional measure of tree dispersion/clustering. 

Continuous NA 

 

Table 2d. Dependent variables for IW and PNW datasets derived from subplot-level FIA 

understory vegetation measurements. See methods for description of cover-weighted height 

calculations. 

# Variable Name Description Variable 

Type 

Scaling 

method 

1 AvgOfCOVER_PCT_FORB Percent cover of all forb species found 

on plot based on the average aerial 

cover layer for each subplot (n=4). 

Continuous Average 

2 AvgOfWeighted_Height_FORB Cover-weighted height of forbs, in 

feet, based on the cover-weighted 

height for each subplot and averaged 

for each plot. 

Continuous Average 

3 AvgOfCOVER_PCT_GRASS Percent cover of all grass species 

found on plot based on the average 

aerial cover layer for each subplot 

(n=4). 

Continuous Average 

4 AvgOfWeighted_Height_GRASS Cover-weighted height of grass, in 

feet, based on the cover-weighted 

height for each subplot and averaged 

for each plot. 

Continuous Average 

5 AvgOfCOVER_PCT_SHRUB Percent cover of all shrub species 

found on plot based on the average 

aerial cover layer for each subplot 

(n=4). 

Continuous Average 

6 AvgOfWeighted_Height_SHRUB Cover-weighted height of shrubs, in 

feet, based on the cover-weighted 

height for each subplot and averaged 

for each plot. 

Continuous Average 
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7 AvgOfCOVER_PCT_TALLY_TREE Percent cover tally trees. This is based 

on the average aerial cover layer for 

each subplot (n=4). Tally trees are 

species on the FIA unit’s list of 

species and include all seedling, 

sapling, and mature trees. 

Continuous Average 

8 AvgOfWeighted_Height_TALLY_TREE Cover-weighted height of tally trees, 

in feet, based on the cover-weighted 

height for each subplot and averaged 

for each plot. 

Continuous Average 

 

Table 3a. Lifeform percent cover and height regression models for the PNW dataset. 

1. AvgOfCOVER_PCT_FORB      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) -2.482812 0.312161 -7.950 0.000000 0.3383583 

TOPO_POSITION_PNW.3.x. 

PCT_Max_Forest_SDI 

0.003971 0.001642 2.420 0.016300  

TOPO_POSITION_PNW.4.x.SDI_sum_SDI_10 0.366339 0.160474 2.280 0.023300  

OWNCD.46.x.meanSapHt 0.029480 0.006805 4.330 0.000022  

FLDSZCD.3.x.AvgOfSLOPE 0.012759 0.003187 4.000 0.000083  

FLDSZCD.3.x. SumOfTPA_UNADJ -0.000918 0.000331 -2.780 0.005900  

CCLCD_Mode.3.x.AvgOfCR -0.026556 0.004368 -6.080 0.000000  

CCLCD_Mode.3.x.numTrees -0.018604 0.006156 -3.020 0.002800  

CCLCD_Mode.3.x.meanTreeHtBAW 0.014817 0.001923 7.700 0.000000  

AvgOfBHAGE.x.numTrees -0.000259 0.000059 -4.360 0.000020  

AvgOfCR.x.model_crcov 0.000591 0.000100 5.890 0.000000  

      

 2. AvgOfCOVER_PCT_GRASS      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) -1.905614 0.213126 -8.940 0.000000 0.423791 

FLDTYPCD.221.x.Northness 0.567305 0.123609 4.590 0.000007  

FLDTYPCD.221.x.AvgOfSLOPE 0.022103 0.004267 5.180 0.000000  

PHYSCLCD.22.x.meanSapHt 0.020788 0.008280 2.510 0.012750  

FLDSZCD.3.x.Final_Mean_Aspect 0.002439 0.000653 3.740 0.000240  

FLDSZCD.3.x.CountOfTREE -0.013368 0.007708 -1.730 0.084240  

STDSZCD.1.x.ELEV 0.000152 0.000040 3.780 0.000200  

D_DSTRBCD1.0.x.ELEV 0.000057 0.000038 1.510 0.132370  

D_DSTRBCD1.0.x.AvgOfSLOPE -0.002791 0.004098 -0.680 0.496420  

HT_Series.TSHE.x.ELEV -0.000818 0.000603 -1.360 0.176130  

AvgOfSLOPE.x.SumOfSeedling_TPA_UNADJ -0.000006 0.000002 -2.560 0.011270  

AvgOfCR.x. PCT_Max_Forest_SDI_sum -0.000362 0.000100 -3.630 0.000340  

      

3. AvgOfCOVER_PCT_SHRUB      
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 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) -0.162625 0.195609 -0.830 0.406590 0.369986 

TOPO_POSITION_PNW.3.x.Eastness 0.752044 0.222574 3.380 0.000850  

TOPO_POSITION_PNW.4.x.FLDSZCD.3 -0.357077 0.160806 -2.220 0.027320  

SITECLCD.5.x.SumOfVOLCFNET 0.000261 0.000097 2.700 0.007500  

FLDTYPCD.221.x.AvgOfSLOPE -0.031041 0.008650 -3.590 0.000400  

OWNCD.11.x.Final_Mean_Aspect -0.001029 0.000739 -1.390 0.165210  

OWNCD.11.x.map_crcov_micr 0.027798 0.007454 3.730 0.000240  

PHYSCLCD.23.x.Eastness -0.670811 0.167590 -4.000 0.000084  

FLDSZCD.3.x.Eastness -0.628390 0.157493 -3.990 0.000088  

CCLCD_Mode.3.x.ELEV -0.000196 0.000042 -4.690 0.000005  

CCLCD_Mode.3.x.AvgOfSLOPE 0.008895 0.002880 3.090 0.002250  

HT_Series.PSME.x.Final_Mean_Aspect 0.002236 0.000663 3.370 0.000880  

HT_Series.TSHE.x.ELEV 0.000247 0.000066 3.720 0.000250  

Northness.x.Eastness -0.656620 0.199719 -3.290 0.001160  

Final_Mean_Aspect.x.numTrees -0.000094 0.000021 -4.410 0.000016  

FLDTYPCD.221.x.Northness -0.413349 0.240675 -1.720 0.087200  

      

4. AvgOfCOVER_PCT_TALLY_TREE      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) -1.269514 0.186980 -6.790 0.000000 0.871671 

TOPO_POSITION_PNW.3.x.Eastness -0.162813 0.097617 -1.670 0.096710  

TOPO_POSITION_PNW.3.x. 

PCT_Max_Forest_SDI 

0.002358 0.000688 3.430 0.000730  

FLDTYPCD.201.x.D_DSTRBCD1.0 0.236362 0.080437 2.940 0.003640  

FLDTYPCD.201.x.SumOfSeedling_TPA_UNADJ -0.000072 0.000042 -1.730 0.084810  

FLDTYPCD.221.x.Northness -0.190764 0.090911 -2.100 0.036970  

FLDTYPCD.221.x.PCT_Max_Forest_SDI -0.003066 0.000639 -4.800 0.000003  

OWNCD.11.x.D_DSTRBCD1.0 0.206735 0.075093 2.750 0.006380  

OWNCD.11.x.Northness 0.271680 0.064892 4.190 0.000040  

OWNCD.46.x.SumOfBASAL_AREA 0.006385 0.002469 2.590 0.010340  

PHYSCLCD.22.x.FLDSZCD.3 -0.448338 0.122292 -3.670 0.000310  

PHYSCLCD.22.x.Northness -0.238361 0.076181 -3.130 0.001980  

PHYSCLCD.22.x.meanTreeHtDom 0.004205 0.001356 3.100 0.002170  

FLDSZCD.3.x.D_TRTCD1.0 0.198433 0.078398 2.530 0.012040  

STDSZCD.1.x.SumDBH_AC 0.000243 0.000046 5.310 0.000000  

STDSZCD.1.x.map_crcov_micr -0.026354 0.005228 -5.040 0.000001  

CCLCD_Mode.3.x.SICOND 0.006546 0.000983 6.660 0.000000  

CCLCD_Mode.3.x.AvgOfBHAGE -0.004338 0.000865 -5.010 0.000001  

D_DSTRBCD1.0.x.map_crcov_micr 0.013219 0.003751 3.520 0.000510  

D_DSTRBCD1.1.x.Eastness 0.159655 0.089134 1.790 0.074580  

D_TRTCD1.0.x.meanTreeHtBAW 0.004443 0.000808 5.500 0.000000  
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D_TRTCD2.0.x.AvgOfCR -0.019293 0.002523 -7.650 0.000000  

HT_Series.TSHE.x.PCT_Max_Occupancy_10 -0.000662 0.000299 -2.210 0.028130  

ELEV.x.SICOND -0.000002 0.000000 -7.670 0.000000  

AvgOfBHAGE.x.PCT_max_occupancy_sum 0.000018 0.000003 5.640 0.000000  

AvgOfCR.x.model_crcov 0.000604 0.000049 12.370 0.000000  

SumOfSeedling_TPA_UNADJ.x. 

PCT_Max_Occupancy_10 

0.000000 0.000000 6.190 0.000000  

      

5. AvgOfWeighted_Height_FORB      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) 0.260448 0.041107 6.340 0.000000 0.220794 

CCLCD_Mode.3.x.ELEV -0.000051 0.000010 -4.990 0.000001  

CCLCD_Mode.3.x.AvgOfSLOPE 0.002653 0.000755 3.510 0.000530  

Northness.x.meanSapHt 0.004807 0.001523 3.160 0.001790  

AvgOfBHAGE.x.PCT_max_occupancy_sum -0.000005 0.000002 -2.590 0.010160  

      

6. AvgOfWeighted_Height_GRASS      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) 0.529383 0.125941 4.200 0.000038 0.306790 

FLDTYPCD.201.x.OWNCD.11 -0.185625 0.050125 -3.700 0.000270  

PHYSCLCD.22.x.FLDSZCD.3 0.104208 0.045384 2.300 0.022580  

FLDSZCD.3.x.CountOfTREE -0.001967 0.001406 -1.400 0.163370  

D_DSTRBCD1.0.x.numTrees -0.003508 0.001419 -2.470 0.014180  

D_DSTRBCD1.1.x.SumOfSeedling_TPA_UNADJ -0.000044 0.000029 -1.520 0.129200  

D_TRTCD2.0.x.SDI_sum_SDI_10 -0.586040 0.108236 -5.410 0.000000  

HT_Series.TSHE.x.Eastness -0.261758 0.074397 -3.520 0.000520  

ELEV.x.SICOND 0.000000 0.000000 3.140 0.001910  

AvgOfSLOPE.x.map_crcov_micr -0.000114 0.000044 -2.590 0.010160  

      

7. AvgOfWeighted_Height_SHRUB      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) 1.332181 0.130893 10.180 0.000000 0.371444 

OWNCD.46.x.SumOfBASAL_AREA 0.004875 0.001786 2.730 0.006820  

PHYSCLCD.22.x.meanTreeHtDom -0.002463 0.001139 -2.160 0.031570  

STDSZCD.1.x.meanSapHt 0.007381 0.002887 2.560 0.011170  

D_DSTRBCD1.0.x.ELEV -0.000046 0.000023 -1.990 0.047660  

ELEV.x.SICOND -0.000001 0.000000 -3.600 0.000380  

AvgOfSLOPE.x.AvgOfCR 0.000060 0.000027 2.220 0.027570  

AvgOfBHAGE.x. PCT_max_occupancy_sum -0.000015 0.000005 -3.250 0.001310  

AvgOfCR.x.model_crcov 0.000086 0.000033 2.600 0.009970  

      

8. AvgOfWeighted_Height_TALLY_TREE      
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 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) 2.315896 0.052042 44.500 0.000000 0.837120 

TOPO_POSITION_PNW.4.x.Eastness 0.045413 0.016673 2.720 0.006950  

TOPO_POSITION_PNW.4.x. 

SumOfSeedling_TPA_UNADJ 

0.000057 0.000015 3.860 0.000150  

TOPO_POSITION_PNW.4.x. 

PCT_Max_Occupancy_10 

-0.000277 0.000068 -4.040 0.000072  

FLDTYPCD.201.x.OWNCD.11 -0.119216 0.023546 -5.060 0.000001  

FLDTYPCD.201.x.AvgOfBHAGE 0.000938 0.000214 4.380 0.000018  

FLDTYPCD.221.x.PCT_Max_Forest_SDI 0.000410 0.000165 2.490 0.013600  

OWNCD.11.x.D_DSTRBCD1.0 0.128379 0.023595 5.440 0.000000  

PHYSCLCD.22.x.Eastness -0.056944 0.019235 -2.960 0.003400  

STDSZCD.1.x.D_DSTRBCD2.0 0.056320 0.029411 1.910 0.056750  

STDSZCD.1.x.ELEV 0.000052 0.000009 5.580 0.000000  

STDSZCD.1.x.map_crcov_micr -0.004611 0.000819 -5.630 0.000000  

STDSZCD.1.x.K_10ft -0.000093 0.000030 -3.080 0.002330  

CCLCD_Mode.3.x.L_6ft 0.004611 0.002313 1.990 0.047410  

D_DSTRBCD1.1.x.Eastness 0.072954 0.023622 3.090 0.002260  

D_DSTRBCD1.1.x.Final_Mean_Aspect 0.000451 0.000108 4.180 0.000042  

D_TRTCD2.0.x.SICOND 0.002455 0.000342 7.190 0.000000  

D_TRTCD2.0.x.AvgOfCR -0.007327 0.000624 -11.750 0.000000  

HT_Series.PSME.x. Final_Mean_Aspect 0.000269 0.000070 3.850 0.000150  

ELEV.x.SICOND -0.000001 0.000000 -6.930 0.000000  

ELEV.x.AvgOfBHAGE 0.000000 0.000000 -3.250 0.001320  

ELEV.x.SumOfBASAL_AREA 0.000000 0.000000 -2.500 0.013000  

ELEV.x.numTrees 0.000001 0.000000 3.940 0.000110  

Final_Mean_Aspect.x. 

SumOfSeedling_TPA_UNADJ 

0.000000 0.000000 -5.140 0.000001  

AvgOfSLOPE.x.SumOfSeedling_TPA_UNADJ -0.000001 0.000000 -2.350 0.019840  

AvgOfCR.x.model_crcov 0.000106 0.000010 10.290 0.000000  

SumOfSeedling_TPA_UNADJ.x. 

PCT_Max_Occupancy_10 

0.000000 0.000000 -0.810 0.417370  

meanSapHt.x.K_6ft 0.000010 0.000004 2.690 0.007570  

 

Table 3b. Lifeform percent cover and height regression models for the IW dataset. 

1. AvgOfCOVER_PCT_FORB      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) -2.806272 0.107374 -26.140 0.000000 0.260302 

SITECLCD.6.x.FLDTYPCD.201 0.243717 0.064514 3.780 0.000160  

FLDTYPCD.221.x.SDI_10 -0.003038 0.000488 -6.220 0.000000  

FLDTYPCD.281.x.QMD 0.045004 0.006360 7.080 0.000000  

PHYSCLCD.12.x.LIVE_MISSING_CANOPY_CV

R_PCT 

-0.003012 0.001065 -2.830 0.004700  
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STDSZCD.1.x.D_DSTRBCD1.0 -0.151030 0.039402 -3.830 0.000130  

CCLCD_Mode.3.x.AvgOfBHAGE -0.001323 0.000569 -2.320 0.020180  

D_TRTCD1.0.x.ELEV -0.000083 0.000016 -5.190 0.000000  

D_TRTCD1.0.x.meanTreeHt 0.010150 0.001335 7.600 0.000000  

HT_Series.ABLA.x.Northness -0.282385 0.052702 -5.360 0.000000  

HT_Series.ABLA.x.QMD 0.007295 0.005335 1.370 0.171530  

HT_Series.PSME.x.LIVE_CANOPY_CVR_PCT -0.008571 0.001135 -7.550 0.000000  

ELEV.x.SICOND 0.000003 0.000000 10.310 0.000000  

ELEV.x.AvgOfDIA -0.000009 0.000001 -6.550 0.000000  

ELEV.x.numTrees -0.000001 0.000000 -4.300 0.000018  

AvgOfSLOPE.x.PCT_Max_Occupancy_sum 0.000007 0.000004 2.010 0.044680  

AvgOfBHAGE.x.PCT_Max_Occupancy_sum -0.000009 0.000002 -4.040 0.000054  

AvgOfCR.x.meanTreeHt 0.000121 0.000025 4.730 0.000002  

LIVE_MISSING_CANOPY_CVR_PCT.x.QMD 0.000534 0.000086 6.200 0.000000  

FLDTYPCD.201.x.K_6ft 0.000203 0.000070 2.910 0.003610  

      

2. AvgOfCOVER_PCT_GRASS      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) -1.730989 0.235913 -7.340 0.000000 0.283702 

SITECLCD.5.x.CCLCD_Mode.3 0.148879 0.064274 2.320 0.020590  

SITECLCD.6.x.PHYSCLCD.22 0.196526 0.050159 3.920 0.000091  

SITECLCD.6.x.HT_Series.PSME -0.473010 0.072880 -6.490 0.000000  

SITECLCD.6.x.AvgOfSLOPE 0.009825 0.002034 4.830 0.000001  

SITECLCD.6.x.meanSapHt 0.010554 0.003089 3.420 0.000640  

SITECLCD.6.x.K_12ft 0.000122 0.000031 3.940 0.000084  

FLDTYPCD.201.x.OWNCD.11 0.247481 0.067054 3.690 0.000230  

FLDTYPCD.201.x.HT_Series.PSME 0.300343 0.074341 4.040 0.000054  

FLDTYPCD.221.x.Final_Mean_Aspect 0.000921 0.000241 3.810 0.000140  

OWNCD.11.x.AvgOfCR -0.006049 0.000835 -7.240 0.000000  

PHYSCLCD.22.x.meanSapHt -0.008486 0.003430 -2.470 0.013400  

STDSZCD.1.x.AvgOfSLOPE 0.005333 0.001472 3.620 0.000300  

CCLCD_Mode.3.x.SICOND -0.008824 0.001478 -5.970 0.000000  

CCLCD_Mode.3.x.L_6ft 0.024527 0.004515 5.430 0.000000  

D_DSTRBCD2.0.x.ELEV -0.000131 0.000028 -4.640 0.000004  

D_DSTRBCD2.0.x.SDI_sum_SDI_10 1.321798 0.267301 4.940 0.000001  

D_TRTCD1.0.x.SDI_sum_SDI_10 0.544962 0.162923 3.340 0.000830  

D_TRTCD1.0.x.meanTreeHt -0.006178 0.002928 -2.110 0.034950  

HT_Series.PSME.x.LIVE_CANOPY_CVR_PCT 0.003756 0.001465 2.560 0.010360  

ELEV.x.SICOND 0.000001 0.000000 2.980 0.002860  

ELEV.x.AvgOfSLOPE -0.000004 0.000000 -10.520 0.000000  

ELEV.x.AvgOfBHAGE 0.000000 0.000000 -1.900 0.057270  
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ELEV.x.LIVE_MISSING_CANOPY_CVR_PCT 0.000002 0.000001 3.290 0.001020  

ELEV.x.numTrees -0.000002 0.000000 -5.570 0.000000  

ELEV.x.meanTreeHt 0.000001 0.000001 1.790 0.072940  

Final_Mean_Aspect.x.AvgOfBHAGE -0.000003 0.000005 -0.640 0.521050  

Final_Mean_Aspect.x.SDI_sum_SDI_10 -0.000097 0.000436 -0.220 0.824610  

AvgOfSLOPE.x.K_6ft -0.000011 0.000002 -4.450 0.000009  

AvgOfCR.x.LIVE_MISSING_CANOPY_CVR_PC

T 

0.000185 0.000039 4.740 0.000002  

AvgOfCR.x.model_crcov -0.000250 0.000038 -6.520 0.000000  

LIVE_MISSING_CANOPY_CVR_PCT.x.QMD 0.000364 0.000159 2.290 0.021890  

LIVE_MISSING_CANOPY_CVR_PCT.x.SDI_su

m_SDI_10 

-0.027691 0.003863 -7.170 0.000000  

SumOfSeedling_TPA_UNADJ.x.QMD -0.000008 0.000002 -3.760 0.000180  

      

3. AvgOfCOVER_PCT_SHRUB      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) -2.522430 0.102240 -24.670 0.000000 0.231536 

SITECLCD.6.x.STDSZCD.1 -0.234879 0.050737 -4.630 0.000004  

SITECLCD.6.x.meanSapHt 0.008305 0.002445 3.400 0.000690  

FLDTYPCD.221.x.Final_Mean_Aspect -0.001580 0.000487 -3.240 0.001200  

FLDTYPCD.221.x.AvgOfSLOPE 0.004755 0.002607 1.820 0.068260  

FLDTYPCD.221.x.SDI_10 -0.001642 0.000574 -2.860 0.004240  

FLDTYPCD.281.x.AvgOfSLOPE 0.008784 0.001304 6.730 0.000000  

PHYSCLCD.22.x.Eastness 0.226877 0.046324 4.900 0.000001  

PHYSCLCD.22.x.Final_Mean_Aspect 0.001471 0.000296 4.960 0.000001  

PHYSCLCD.22.x.AvgOfSLOPE -0.005190 0.001428 -3.630 0.000280  

PHYSCLCD.23.x.PCT_Max_Occupancy_sum 0.000752 0.000161 4.660 0.000003  

FLDSZCD.2.x.Final_Mean_Aspect 0.001387 0.000278 4.980 0.000001  

FLDSZCD.3.x.Final_Mean_Aspect 0.001442 0.000257 5.600 0.000000  

D_DSTRBCD1.0.x.AvgOfSLOPE 0.007914 0.001491 5.310 0.000000  

D_DSTRBCD1.1.x.LIVE_MISSING_CANOPY_C

VR_PCT 

0.005216 0.001186 4.400 0.000011  

D_TRTCD1.0.x.AvgOfDIA -0.046599 0.009523 -4.890 0.000001  

D_TRTCD1.0.x.meanTreeHt 0.014988 0.001745 8.590 0.000000  

HT_Series.ABLA.x.QMD 0.019695 0.005444 3.620 0.000300  

ELEV.x.SICOND -0.000002 0.000000 -7.750 0.000000  

ELEV.x.numTrees 0.000001 0.000000 3.410 0.000650  

SICOND.x.AvgOfCR 0.000288 0.000021 13.490 0.000000  

Final_Mean_Aspect.x.AvgOfBHAGE -0.000011 0.000002 -4.520 0.000006  

AvgOfSLOPE.x.numSaplings -0.000821 0.000147 -5.590 0.000000  

QMD.x.numTrees -0.000690 0.000246 -2.800 0.005110  

D_DSTRBCD1.0.x.meanSapHt -0.007794 0.002421 -3.220 0.001290  

CCLCD_Mode.3.x.AvgOfSLOPE 0.002412 0.001267 1.900 0.057040  
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FLDTYPCD.281.x.SumOfSeedling_TPA_UNADJ 0.000032 0.000012 2.610 0.009190  

      

4. AvgOfCOVER_PCT_TALLY_TREE      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) -1.894894 0.187041 -10.130 0.000000 0.295935 

SITECLCD.6.x.OWNCD.11 -0.157688 0.041769 -3.780 0.000160  

SITECLCD.6.x.numSaplings 0.016788 0.003275 5.130 0.000000  

FLDTYPCD.201.x.Final_Mean_Aspect -0.000873 0.000154 -5.680 0.000000  

FLDTYPCD.221.x.Final_Mean_Aspect -0.000774 0.000211 -3.670 0.000250  

OWNCD.11.x.HT_Series.PSME -0.226301 0.048706 -4.650 0.000003  

OWNCD.11.x.Final_Mean_Aspect 0.000658 0.000156 4.230 0.000024  

PHYSCLCD.23.x.PCT_Max_Occupancy_sum 0.000514 0.000110 4.660 0.000003  

FLDSZCD.3.x.numTrees -0.004822 0.000974 -4.950 0.000001  

CCLCD_Mode.3.x.AvgOfSLOPE 0.002882 0.001002 2.880 0.004050  

CCLCD_Mode.3.x.PCT_Max_Occupancy_sum 0.000338 0.000122 2.770 0.005690  

CCLCD_Mode.3.x.SDI_sum_SDI_10 -0.185535 0.083917 -2.210 0.027100  

D_DSTRBCD2.0.x.ELEV 0.000081 0.000020 4.140 0.000035  

D_DSTRBCD2.0.x.SDI_sum_SDI_10 -0.755521 0.192329 -3.930 0.000087  

D_TRTCD1.0.x.meanTreeHt 0.004189 0.001209 3.470 0.000530  

HT_Series.ABLA.x.Final_Mean_Aspect -0.000573 0.000189 -3.030 0.002460  

ELEV.x.AvgOfDIA -0.000013 0.000002 -6.270 0.000000  

AvgOfSLOPE.x.SumOfSeedling_TPA_UNADJ 0.000000 0.000000 -1.700 0.088850  

AvgOfCR.x.model_crcov 0.000260 0.000021 12.570 0.000000  

LIVE_MISSING_CANOPY_CVR_PCT.x.QMD -0.000140 0.000162 -0.870 0.386590  

LIVE_MISSING_CANOPY_CVR_PCT.x.SDI_su

m_SDI_10 

0.014564 0.001649 8.830 0.000000  

SumOfSeedling_TPA_UNADJ.x.QMD 0.000010 0.000002 6.380 0.000000  

      

5. AvgOfWeighted_Height_FORB      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) 0.299116 0.028473 10.510 0.000000 0.060985 

FLDTYPCD.221.x.SumOfTPA_UNADJ -0.000113 0.000030 -3.740 0.000190  

PHYSCLCD.22.x.D_DSTRBCD1.0 0.037594 0.012201 3.080 0.002080  

CCLCD_Mode.3.x.AvgOfUNCRCD -0.000976 0.000244 -3.990 0.000066  

ELEV.x.numTrees 0.000000 0.000000 -7.450 0.000000  

SICOND.x.AvgOfCR 0.000037 0.000007 5.590 0.000000  

AvgOfBHAGE.x.AvgOfUNCRCD -0.000012 0.000002 -5.120 0.000000  

FLDSZCD.3.x.AvgOfSLOPE 0.000854 0.000273 3.120 0.001790  

      

6. AvgOfWeighted_Height_GRASS      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) 0.291850 0.030657 9.520 0.000000 0.076675 
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SITECLCD.5.x.Northness 0.051439 0.025078 2.050 0.040320  

SITECLCD.6.x.OWNCD.11 0.067661 0.016111 4.200 0.000027  

SITECLCD.6.x.Northness 0.043720 0.020267 2.160 0.031050  

FLDTYPCD.201.x.D_DSTRBCD1.0 0.053829 0.015789 3.410 0.000660  

FLDTYPCD.221.x.SumOfTPA_UNADJ -0.000184 0.000048 -3.870 0.000110  

FLDTYPCD.221.x.SDI_10 0.000819 0.000120 6.810 0.000000  

OWNCD.11.x.FLDSZCD.3 -0.069608 0.018109 -3.840 0.000120  

OWNCD.11.x.Northness -0.052928 0.020041 -2.640 0.008300  

OWNCD.11.x.numSaplings -0.006622 0.001969 -3.360 0.000780  

OWNCD.46.x.Northness -0.065813 0.023964 -2.750 0.006050  

PHYSCLCD.12.x.LIVE_MISSING_CANOPY_CV

R_PCT 

-0.000820 0.000301 -2.730 0.006420  

PHYSCLCD.22.x.meanSapHt -0.002702 0.000885 -3.050 0.002270  

PHYSCLCD.23.x.PCT_Max_Occupancy_sum -0.000194 0.000070 -2.790 0.005270  

FLDSZCD.3.x.ELEV 0.000015 0.000003 5.590 0.000000  

CCLCD_Mode.3.x.SICOND 0.001620 0.000478 3.390 0.000700  

CCLCD_Mode.3.x.AvgOfUNCRCD -0.001305 0.000330 -3.950 0.000079  

HT_Series.PSME.x.PCT_Max_Occupancy_sum 0.000191 0.000048 4.010 0.000062  

ELEV.x.meanTreeHt 0.000000 0.000000 -3.370 0.000770  

AvgOfSLOPE.x.AvgOfBHAGE -0.000010 0.000003 -3.400 0.000670  

LIVE_MISSING_CANOPY_CVR_PCT.x.QMD 0.000072 0.000035 2.060 0.039120  

QMD.x.numTrees -0.000415 0.000061 -6.810 0.000000  

      

7. AvgOfWeighted_Height_SHRUB      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) 0.345172 0.133522 2.590 0.009770 0.359741 

SITECLCD.6.x.OWNCD.11 -0.127970 0.022737 -5.630 0.000000  

FLDTYPCD.201.x.ELEV 0.000018 0.000003 5.350 0.000000  

FLDTYPCD.221.x.Eastness 0.086497 0.025494 3.390 0.000700  

FLDTYPCD.221.x.AvgOfSLOPE 0.001071 0.000814 1.320 0.188370  

FLDTYPCD.221.x.SDI_10 -0.000618 0.000175 -3.530 0.000420  

OWNCD.11.x.D_DSTRBCD1.0 0.092983 0.021077 4.410 0.000011  

FLDSZCD.3.x.CCLCD_Mode.3 0.199488 0.027309 7.300 0.000000  

FLDSZCD.3.x.numTrees -0.003581 0.000850 -4.210 0.000026  

CCLCD_Mode.3.x.AvgOfSLOPE 0.002762 0.000777 3.550 0.000390  

CCLCD_Mode.3.x.AvgOfUNCRCD -0.003601 0.000590 -6.110 0.000000  

D_DSTRBCD1.0.x.AvgOfSLOPE 0.003031 0.000779 3.890 0.000100  

D_DSTRBCD1.1.x.LIVE_MISSING_CANOPY_C

VR_PCT 

0.001934 0.000613 3.150 0.001630  

D_DSTRBCD2.0.x.AvgOfUNCRCD 0.004189 0.000931 4.500 0.000007  

D_DSTRBCD2.0.x.SDI_sum_SDI_10 -0.239258 0.114288 -2.090 0.036380  

D_TRTCD1.0.x.SICOND 0.009479 0.000706 13.440 0.000000  
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D_TRTCD1.0.x.SDI_sum_SDI_10 -0.507280 0.059549 -8.520 0.000000  

D_TRTCD2.0.x.SDI_sum_SDI_10 0.708510 0.172864 4.100 0.000042  

ELEV.x.SICOND -0.000001 0.000000 -12.270 0.000000  

AvgOfBHAGE.x.LIVE_MISSING_CANOPY_CV

R_PCT 

-0.000023 0.000006 -4.060 0.000050  

AvgOfBHAGE.x.AvgOfUNCRCD -0.000023 0.000005 -4.560 0.000005  

AvgOfCR.x.model_crcov 0.000043 0.000012 3.580 0.000340  

AvgOfCR.x.meanTreeHt 0.000074 0.000011 6.650 0.000000  

      

8. AvgOfWeighted_Height_TALLY_TREE      

 Estimate Std. Error t value Pr(>|t|) McFadden 

(Intercept) 2.096104 0.052165 40.180 0.000000 0.209798 

SITECLCD.6.x.OWNCD.11 -0.044226 0.015888 -2.780 0.005400  

SITECLCD.6.x.meanSapHt 0.003303 0.000744 4.440 0.000009  

FLDTYPCD.201.x.Final_Mean_Aspect -0.000250 0.000058 -4.280 0.000019  

FLDTYPCD.221.x.Final_Mean_Aspect -0.000368 0.000089 -4.140 0.000035  

FLDTYPCD.221.x.K_12ft -0.000051 0.000021 -2.440 0.014880  

OWNCD.11.x.D_DSTRBCD1.0 0.040032 0.012718 3.150 0.001660  

PHYSCLCD.22.x.meanSapHt 0.002121 0.000596 3.560 0.000380  

CCLCD_Mode.3.x.AvgOfSLOPE 0.001625 0.000314 5.170 0.000000  

D_DSTRBCD2.0.x.ELEV 0.000021 0.000004 4.710 0.000003  

D_DSTRBCD2.0.x.SDI_sum_SDI_10 -0.239021 0.053304 -4.480 0.000008  

D_TRTCD1.0.x.SICOND 0.001814 0.000401 4.530 0.000006  

ELEV.x.AvgOfDIA -0.000004 0.000000 -11.740 0.000000  

Final_Mean_Aspect.x.L_6ft 0.000019 0.000007 2.630 0.008660  

AvgOfSLOPE.x.SumOfSeedling_TPA_UNADJ -0.000001 0.000000 -8.580 0.000000  

AvgOfSLOPE.x.K_6ft -0.000003 0.000001 -3.210 0.001350  

AvgOfCR.x.model_crcov 0.000060 0.000008 7.200 0.000000  

AvgOfCR.x.G_12ft 0.000409 0.000441 0.930 0.353780  

QMD.x.numTrees 0.000355 0.000043 8.200 0.000000  

 

Table 4. Frequency of occurrence of individual predictors within 2-way interactions for both 

PNW and IW regression models. NA refers to regionally-specific variables that were not 

measured. In the case of the nearest neighbor functions (G), these were not calculated for the 

PNW dataset. 

# Variable PNW IW 

1 ELEV 15 22 

2 TOPO_POSITION_PNW (PNW only) 9 NA 

3 SITECLCD 1 17 

4 D_DSTRBCD1 12 10 
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5 D_DSTRBCD2 1 8 

6 FLDTYPCD 12 25 

7 HT_Series 6 10 

8 OWNCD 10 14 

9 PHYSCLCD 8 13 

10 SICOND 6 10 

11 FLDSZCD 10 8 

12 STDSZCD 8 3 

13 D_TRTCD1 2 10 

14 D_TRTCD2 4 1 

15 LIVE_CANOPY_CVR_PCT_(IW only) NA 2 

16 LIVE_MISSING_CANOPY_CVR_PCT_(IW_only) NA 13 

17 Eastness (derived) 10 2 

18 Northness (derived) 7 5 

19 Final_Mean_Aspect (derived) 7 15 

20 Coded_Aspect (derived) 0 0 

21 Cardinal_Direction (derived) 0 0 

22 AvgOfSLOPE 10 21 

23 CountOfTREE 2 0 

24 SumOfTPA_UNADJ 1 2 

25 AvgOfDIA 0 4 

26 AvgOfACTUALHT 0 0 

27 AvgOfBHAGE 7 9 

28 CCLCD_Mode 10 15 

29 AvgOfCR 9 11 

30 SumOfBASAL_AREA 3 0 

31 SumOfVOLCFNET 1 0 

32 SumOfVOLCFGRS 0 0 

33 AvgOfUNCRCD (IW only) NA 6 

34 SumOfSeedling_TPA_UNADJ 8 5 

35 SumDBH_AC 1 0 

36 QMD 0 12 

37 BA_AC 0 0 

38 VOLCFNET_AC 0 0 

39 VOLCFGRS_AC 0 0 

40 SDI_10 0 4 

41 Max_Forest_SDI 0 0 

42 PCT_Max_Occupancy_10 4 0 

43 PCT_Max_Forest_SDI_10 0 0 

44 PCT_Max_Forest_SDI 4 0 
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45 SDI_sum 0 0 

46 PCT_Max_Occupancy_sum 3 7 

47 PCT_Max_Forest_SDI_sum 1 0 

48 SDI_sum_SDI_10 2 11 

49 map_crcov_subp 0 0 

50 map_crcov_micr 5 0 

51 model_crcov 4 4 

52 numTrees 5 9 

53 meanTreeHt 0 8 

54 meanTreeHtBAW 2 0 

55 meanTreeHtDom 2 0 

56 meanTreeHtDomBAW 0 0 

57 predomTreeHt 0 0 

58 numSaplings 0 3 

59 meanSapHt 5 7 

60 maxSapHt 0 0 

61 standHt 0 0 

62 K_6ft 1 3 

63 K_8ft 0 0 

64 K_10ft 1 0 

65 K_12ft 0 2 

66 L_6ft 1 2 

67 L_8ft 0 0 

68 L_10ft 0 0 

69 L_12ft 0 0 

70 G_6ft NA 0 

71 G_8ft NA 0 

72 G_10ft NA 0 

73 G_12ft NA 1 
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Figure 33 a. Plot of predicted versus observed values for mean percent forb cover for the PNW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units (i.e. percent cover) and expressed as a proportion. 



99 
 

 

Figure 33b. Predicted versus observed bar graphs for mean percent forb cover for the PNW 

dataset. The classes represent the range of the data divided by 20 and count values along the y-

axis represent the number of observations (plots). The x-axis is retransformed to its original units 

(i.e. percent cover) and expressed as a proportion. 
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Figure 33c. Plot of predicted versus observed values for mean percent grass cover for the PNW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units (i.e. percent cover) and expressed as a proportion. 
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Figure 33d. Predicted versus observed bar graphs for mean percent grass cover for the PNW 

dataset. The classes represent the range of the data divided by 20 and count values along the y-

axis represent the number of observations (plots). The x-axis is retransformed to its original units 

(i.e. percent cover) and expressed as a proportion. 
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Figure 33e. Plot of predicted versus observed values for mean percent shrub cover for the PNW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units (i.e. percent cover) and expressed as a proportion. 
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Figure 33f. Predicted versus observed bar graphs for mean percent shrub cover for the PNW 

dataset. The classes represent the range of the data divided by 20 and count values along the y-

axis represent the number of observations (plots). The x-axis is retransformed to its original units 

(i.e. percent cover) and expressed as a proportion. 
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Figure 33g. Plot of predicted versus observed values for mean percent tally tree cover for the 

PNW dataset. The one to one line is represented in red. Both axes are retransformed to their 

original units (i.e. percent cover) and expressed as a proportion. 
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Figure 33h. Predicted versus observed bar graphs for mean percent tally tree cover for the PNW 

dataset. The classes represent the range of the data divided by 20 and count values along the y-

axis represent the number of observations (plots). The x-axis is retransformed to its original units 

(i.e. percent cover) and expressed as a proportion. 
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Figure 33i. Plot of predicted versus observed values for mean forb height for the PNW dataset. 

The one to one line is represented in red. Both axes are retransformed to their original units and 

expressed in feet. 
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Figure 33j. Predicted versus observed bar graphs for mean forb height for the PNW dataset. The 

classes represent the range of the data divided by 20 and count values along the y-axis represent 

the number of observations (plots). The x-axis is retransformed to its original units and expressed 

in feet. 
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Figure 33k. Plot of predicted versus observed values for mean grass height for the PNW dataset. 

The one to one line is represented in red. Both axes are retransformed to their original units and 

expressed in feet. 
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Figure 33l. Predicted versus observed bar graphs for mean grass height for the PNW dataset. 

The classes represent the range of the data divided by 20 and count values along the y-axis 

represent the number of observations (plots). The x-axis is retransformed to its original units and 

expressed in feet. 
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Figure 33m. Plot of predicted versus observed values for mean shrub height for the PNW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units and expressed in feet. 
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Figure 33n. Predicted versus observed bar graphs for mean shrub height for the PNW dataset. 

The classes represent the range of the data divided by 20 and count values along the y-axis 

represent the number of observations (plots). The x-axis is retransformed to its original units and 

expressed in feet. 
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Figure 33o. Plot of predicted versus observed values for mean tally tree height for the PNW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units and expressed in feet. 

 



113 
 

 

Figure 33p. Predicted versus observed bar graphs for mean tally tree height for the PNW dataset. 

The classes represent the range of the data divided by 20 and count values along the y-axis 

represent the number of observations (plots). The x-axis is retransformed to its original units and 

expressed in feet. 
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Figure 34a. Plot of predicted versus observed values for mean percent forb cover for the IW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units (i.e. percent cover) and expressed as a proportion. 
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Figure 34b. Predicted versus observed bar graphs for mean percent forb cover for the IW 

dataset. The classes represent the range of the data divided by 20 and count values along the y-

axis represent the number of observations (plots). The x-axis is retransformed to its original units 

(i.e. percent cover) and expressed as a proportion. 
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Figure 34c. Plot of predicted versus observed values for mean percent grass cover for the IW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units (i.e. percent cover) and expressed as a proportion. 
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Figure 34d. Predicted versus observed bar graphs for mean percent grass cover for the IW 

dataset. The classes represent the range of the data divided by 20 and count values along the y-

axis represent the number of observations (plots). The x-axis is retransformed to its original units 

(i.e. percent cover) and expressed as a proportion. 
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Figure 34e. Plot of predicted versus observed values for mean percent shrub cover for the IW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units (i.e. percent cover) and expressed as a proportion. 
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Figure 34f. Predicted versus observed bar graphs for mean percent shrub cover for the IW 

dataset. The classes represent the range of the data divided by 20 and count values along the y-

axis represent the number of observations (plots). The x-axis is retransformed to its original units 

(i.e. percent cover) and expressed as a proportion. 
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Figure 34g. Plot of predicted versus observed values for mean percent tally tree cover for the IW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units (i.e. percent cover) and expressed as a proportion. 
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Figure 34h. Predicted versus observed bar graphs for mean percent tally tree cover for the IW 

dataset. The classes represent the range of the data divided by 20 and count values along the y-

axis represent the number of observations (plots). The x-axis is retransformed to its original units 

(i.e. percent cover) and expressed as a proportion. 
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Figure 34i. Plot of predicted versus observed values for mean height forb cover for the IW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units and expressed in feet. 
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Figure 34j. Predicted versus observed bar graphs for mean forb height for the IW dataset. The 

classes represent the range of the data divided by 20 and count values along the y-axis represent 

the number of observations (plots). The x-axis is retransformed to its original units and expressed 

in feet. 
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Figure 34k. Plot of predicted versus observed values for mean grass height for the IW dataset. 

The one to one line is represented in red. Both axes are retransformed to their original units and 

expressed in feet. 
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Figure 34l. Predicted versus observed bar graphs for mean grass height for the IW dataset. The 

classes represent the range of the data divided by 20 and count values along the y-axis represent 

the number of observations (plots). The x-axis is retransformed to its original units and expressed 

in feet. 
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Figure 34m. Plot of predicted versus observed values for mean shrub height for the IW dataset. 

The one to one line is represented in red. Both axes are retransformed to their original units and 

expressed in feet. 
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Figure 34n. Predicted versus observed bar graphs for mean shrub height for the IW dataset. The 

classes represent the range of the data divided by 20 and count values along the y-axis represent 

the number of observations (plots). The x-axis is retransformed to its original units and expressed 

in feet. 

 

 



128 
 

 

Figure 34o. Plot of predicted versus observed values for mean tally tree height for the IW 

dataset. The one to one line is represented in red. Both axes are retransformed to their original 

units and expressed in feet. 
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Figure 34p. Predicted versus observed bar graphs for mean tally tree height for the IW dataset. 

The classes represent the range of the data divided by 20 and count values along the y-axis 

represent the number of observations (plots). The x-axis is retransformed to its original units and 

expressed in feet. 

 


