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Abstract 

The air quality and fire management communities are faced with increasingly difficult decisions 

regarding critical fire management activities, given the potential contribution of wildland fires to 

fine particulate matter (PM2.5). Unfortunately, in model frameworks used for air quality 

management, the ability to represent PM2.5 from biomass burning (BB) is severely limited. 

Particularly uncertain is the formation of secondary organic aerosol (SOA). This is due in large 

part to incomplete identification and quantification of compounds emitted from fires and 

uncertainties in mechanisms leading to SOA formation under ambient conditions. Thus there is 

great need for improved emissions inventories and validated smoke models that better capture 

emissions of intermediate and semi-volatile organic compounds (I/SVOCs) as well as SOA 

formation and aging as a function of fuel type and burn characteristics. We assembled a uniquely 

qualified team to: 1) provide improved emission factors (EFs) with an emphasis on those critical 

to understanding SOA; 2) develop a detailed model to accurately represent SOA in smoke 

plumes; and 3) use the detailed model as a tool, along with measurements, to implement and 

deliver an operational modeling framework with an improved ability to predict SOA formation, 

and thus PM2.5, from wildland fires.  

We achieved significant improvement in the characterization of gaseous organic compounds, 

including IVOCs (more abundant than SVOCs), relative to what is currently in the NEI and EPA 

SPECIATE emissions inventories. Data from four techniques were synthesized into a single EF 

database that includes over 500 gaseous non-methane organic compounds to provide a 

comprehensive picture of speciated, gaseous BB emissions. Of the total gaseous EF, 6-11% was 

associated with IVOCs. These atmospherically relevant compounds historically have been 

unresolved in BB smoke measurements and therefore are largely missing from emissions 

inventories. We highlighted some challenges in scaling these laboratory-based EFs to field 

conditions, particularly given the large diversity of potential SOA precursors and their 

dependence on fuel type, burn characteristics, and particle loadings. We identified and prioritized 

a subset of compounds for consideration in air quality models. The identified compounds were 

screened for published SOA yields; 55-77% of the reactive carbon was associated with 

compounds for which SOA yields are unknown. Thus we developed reaction mechanisms and 

SOA parameterizations, needed for air quality modeling, using 0-D box models.  

While limited data precluded complete model representation of all compounds, we demonstrated 

the sensitivity of SOA and PM2.5 predictions to newly identified SOA precursors and an increase 

in total organic carbon. CMAQv.5.0.2 and v.5.2 were used to predict SOA and PM2.5 

concentrations for August 2013 and 2015. Model results were compared with measurements, 

including from the Biomass Burning Observation Project (BBOP). PM2.5 concentrations were 

generally underpredicted and relatively insensitive to changes in SOA using CMAQv.5.0.2. 

However, PM2.5 concentrations showed a greater sensitivity to and contribution from BB-derived 

SOA precursors using CMAQv.5.2. Our BB emissions updates within CMAQv.5.2 generally 

resulted in a reduction in negative biases in PM2.5, and at some sites an overestimation of PM2.5. 

Our integrated measurement-model approach advanced the understanding of key sensitivities and 

uncertainties for predictions of the contribution of wildland fire emissions to SOA. Future work 

is needed to: 1) scale laboratory-based EFs of speciated gaseous organic compounds to field 

conditions (allowing for PM2.5 concentration-dependent partitioning); 2) further investigate the 

chemistry of key new precursors we identified (models and measurements); and 3) better 

constrain SOA model parameterizations using newly available data. 
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Project Objectives and Hypothesis 

Through the project objectives, we sought to address critical knowledge gaps in: 1) identification 

and quantification of BB emissions and availability of representative EFs; 2) dominant SOA 

formation and aging processes in smoke plumes; and 3) the representation of emissions and SOA 

formation from fires in air quality modeling frameworks. The project objectives and hypotheses 

were based on questions outlined in Task 3 of the FON: “Contribution of smoke emissions to 

secondary organic aerosols”. A summary update of the objectives and hypotheses follows. 

Objective 1: Identify and quantify I/SVOC emissions from selected conifer, shrub, and grass 

species. 

Objective met. We merged all of the EFs measured during the Fourth Fire Lab at Missoula 

Experiment (FLAME-4) by GC×GC/TOFMS, OP-FTIR, PTR-TOFMS, and 1-D GC/MS into a 

comprehensive set of EFs for burns of ponderosa pine, black spruce, rice straw, and peat. The 

total number of identified compounds per fire ranged from 467-569, and the combination of 

techniques allowed a wider range of compound types to be identified than could be accessed by a 

single instrument. The resulting publication[1] presents the most comprehensive biomass-burning 

gas-phase organic emissions inventory to date. Further, 6-11% of the total gaseous non-methane 

organic carbon (NMOC) EF was associated with IVOCs; these compounds are largely missing 

from the most widely used emissions inventories, which has implications for predictions of SOA 

in air quality modeling frameworks. 

Objective 2: Quantify SOA formation potentials for I/SVOCs of interest, and identify the most 

relevant precursors and reaction mechanisms for SOA formation and aging. 

Objective met. We identified a large number of compounds within our comprehensive EF 

database that are likely SOA precursors. All compounds were screened for SOA potential based 

on their EF, reactivity with OH radical, and carbon number. For all likely SOA precursors, we 

conducted an extensive literature search for published data on SOA formation (i.e., SOA yields). 

For many, their SOA yield is either completely unknown or unreported. Of these unstudied (or 

understudied) compounds, those with the highest SOA potential were identified as top priorities 

for future studies. Further, for a subset of these prioritized compounds, we estimated the SOA 

yield using a chemically detailed 0-D box model, and developed model parameterizations.  

Objective 3: Evaluate sensitivity of SOA formation to uncertainties in emissions, including as 

influenced by burn characteristics.  

Objective met. Measurement uncertainty, emissions variability, and fuel/MCE dependence were 

reported Hatch et al. [1] In addition, working with S. Kreidenweis and J. Pierce (JFSP project 14-

1-03-26), we investigated how NMOCs (including SOA precursors) are partitioned between the 

gas and particle phases since higher particle concentrations promotes partitioning to the particle 

phase. This partitioning has several effects. One practical aspect is that gas-phase EFs measured 

for I/SVOCs in laboratory settings or near the source in field studies, with high particle 

concentrations, will be lower than what would be measured in more dilute plumes. More 

generally, as plumes dilute some particle-phase NMOCs will evaporate to the gas phase 

depending on their vapor pressure. This reduces the primary OA burden, but adds to the pool of 

gas-phase SOA precursors. Thus, the relative distribution of NMOC emissions between the gas 

and particle phase as plumes dilute is needed to model emissions and their chemistry. The gas-
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particle phase distribution is dynamic and still poorly constrained for some compounds, which is 

a key uncertainty in modeling emissions and aging. 

Objective 4: Modify the AIRPACT framework to include the most relevant SOA precursors and 

formation and aging mechanisms.  

Objective met. Updated speciation profiles for coniferous fuels and crops were developed using 

the FLAME-IV EFs. These speciation profiles were mapped to lumped model compounds 

represented in the AIRPACT framework (specifically within the SAPRC gas-phase chemical 

mechanism and SOA module in CMAQv.5.0.2, and later in CMAQv.5.2). For some of the 

locations in the CMAQv.5.0.2 modeling domain, maximum predicted SOA increased by a factor 

of two due to changes in the emissions inventories and speciation profiles for coniferous fuels. 

CMAQv.5.2 includes an aging mechanism for all combustion-derived SOA (and primary OA), 

which applies to biomass burning emissions. No other aging mechanisms were considered in 

AIRPACT. However in CMAQv.5.2, in addition to the updated emissions inventories and 

speciation profiles, sensitivity runs were conducted in which the total NMOC emissions were 

increased and the contribution of OC to total PM2.5 was increased to better represent recent 

measurements.[2] 

Objective 5: Evaluate implementation of improvements in AIRPACT using satellite products and 

field data.  

Objective met. Model-predicted PM2.5 concentrations using CMAQv.5.0.2 within AIRPACT for 

August 2015 were compared with measurements from air quality monitoring stations in the 

Pacific Northwest. While maximum SOA concentrations doubled in some locations with the 

updated emissions inventories, there were no statistically significant differences in PM2.5 

concentrations and the general negative bias in the model predictions was not improved. One 

important observation was that the model greatly underpredicted the contribution of SOA (vs. 

primary OA) to PM2.5, in comparison with observations reported by Zhou et al.[1] This is one of 

the reasons PM2.5 in CMAQv.5.0.2 was relatively insensitive to changes in emissions of BB-

derived SOA precursors. Predicted PM2.5 concentrations using CMAQv.5.2 for August 2013 

were compared with measurements obtained during the 2013 BBOP study. The SOA mechanism 

in CMAQv.5.2 produced a more reasonable SOA (vs. primary OA) contribution to PM2.5. When 

comparing to the air quality network, our updated NMOC EF and speciation profiles led to a 

general reversal of the negative bias and a positive bias in PM2.5 predictions at ~10% of the sites. 

This may be due to unintended “double counting” of unidentified/unquantified SOA precursors 

(including evaporated primary OA). Some treatment of this is built into CMAQv.5.2 and may 

overlap our own model updates. 

Objective 6: Identify priorities for future measurement and modeling efforts, including by 

comparing calculated emission factors with NEI emission factors.   

Objective met. We have produced the most comprehensive EF database for speciated, gaseous 

NMOCs which can be used within a number of air quality modeling frameworks. However, two 

major limitations exist: 1) uncertainties in scaling laboratory-based EF as a function of fuel type, 

burn characteristics, and particle loading to effective dilution and fuels implied by model 

resolution; and 2) absence of reactivity and SOA formation data for newly identified compounds 

required to constrain model parameterizations. Regarding one, the correlation of gaseous NMOC 

EFs with fuel type and burn characteristics appears to be relatively robust for laboratory studies. 
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However, for the wide diversity of NMOCs that we have speciated, this relationship becomes 

less clear (particularly for more reactive compounds) at the model resolution for which the EFs 

are applied. For instance, a scaling factor for I/SVOCs that accounts for gas-particle partitioning 

at the resolution-controlled effective dilution is greatly needed. Thus, one priority, is conducting 

coordinated measurement efforts (similar to the laboratory campaigns) to produce field-based 

EFs of speciated NMOCs, which can be compared with laboratory-based values, and to derive 

volatility distributions of gas- and particle-phase NMOCs. Regarding two, though a large number 

of potentially important precursors were identified and prioritized for future studies, only a few 

compounds could be explicitly considered and thus the representation of the newly identified 

compounds within the AIRPACT modeling framework was limited and poorly constrained. 

Therefore another priority is the continued pursuit of integrated measurement and modeling 

studies; in which the future air quality modeling studies will benefit from: 1) the wealth of new 

measurement data on biomass burning derived precursors and SOA formation (i.e. yields); and 

2) the updated model parameterizations and frameworks that are based on the new data. 

Hypothesis 1: Improved representation of the diversity of SOA precursors emitted from wildland 

fires and the processes critical to SOA formation and aging in wildland smoke plumes are 

needed and can be achieved in current chemical transport models (CTMs).  

Partially confirmed. The compilation of gas-phase EFs for speciated organics and our screening 

procedure confirmed that a number of likely important SOA precursors are not being represented 

in current air quality modeling frameworks. Further, the quantities of the gas-phase NMOCs, 

specifically I/SVOCs that are important SOA precursors, may be significantly underestimated in 

models by using laboratory-based EFs that are not scaled based on total gas- plus particle-phase 

NMOC. Box model simulations also demonstrated that some of the newly identified compounds 

were likely to form significant SOA. While these findings improve the our general understanding 

of the potential for SOA formation from BB emissions, very little data exist on the reaction 

mechanisms and SOA formation potentials for these newly identified compounds. This lack of 

data even challenges the use of chemically detailed models, which also rely on such data. Thus, 

the representation of these diverse precursors in CTMs, while improved, will not be complete or 

well constrained until further mechanistic data, field validation, and (eventually) 

parameterizations are available.  

Hypothesis 2: Comprehensive analysis of I/SVOC measurements from targeted FLAME-IV 

studies will allow identification and quantification of important BB-SOA precursors, including 

their variability as a function of burn and fuel characteristics. 

Confirmed. Compilation of data from multiple analytical techniques, applied during FLAME-IV, 

yielded EFs for a large number of likely SOA precursors, which previously had not been 

identified and quantified. There were distinct differences in the identities of individual 

compounds/classes of compounds as a function of fuel type. Subsequent efforts, seeded by the 

JFSP funding, indicate that the identities and quantities of compounds vary as a function of fuel 

type and fuel characteristics (e.g., canopy vs. woody fuels vs. duff), which complicates scaling 

laboratory-based EFs for some compounds/classes of compounds as a function of modified 

combustion efficiency (MCE). A number of monoterpenes, including camphene, and furan/furan 

derivatives were identified as likely important for SOA formation. 
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Hypothesis 3: Multi-scale modeling will allow identification of the mechanisms that describe the 

bulk of SOA formation in smoke plumes and parameterization for improved representation in 

CTMs. 

Partially confirmed. In CTMs, including CMAQ within AIRPACT, the diversity of NMOCs that 

serve as SOA precursors are represented by a small number of lumped surrogate products (~5-8). 

One of the important findings of this work was that not all of the identified compounds could be 

well represented by the limited number of model surrogates. Developing new reaction 

mechanisms and SOA parameterizations requires detailed 0-D modeling and/or compilation of 

measurement data. In the absence of the latter, we were able to develop a gas-phase chemical 

mechanism for furan/furan derivatives (project leveraged by JFSP) and we also used a 0-D box 

to derive SOA parameters for a series of monoterpenes, including camphene. CTMs, including 

CMAQv.5.2, are starting to include upgraded/improved SOA formation mechanisms, but these 

mechanisms still need considerable refinement and testing. 

Hypothesis 4: Laboratory (FLAME-IV) and field (BBOP) data are available to validate advanced 

BB-SOA representations in model frameworks used by air quality and land managers. 

Confirmed. In the first measurement/model comparisons (CMAQv.5.0.2, August 2015), PM2.5 

predictions were insensitive to changes in predicted SOA (with updated treatment of BB 

emissions). Comparisons with published data illustrated that likely too much of the total OA in 

the model was primary, and that with a more reasonable primary to secondary OA distribution, 

model updates could be better evaluated. The availability of PM2.5 concentration data as a 

function of space and time, with proxy data for the relative distribution of primary vs. secondary 

OA, were critical for evaluating updates to BB emissions inventories and SOA models.  

Background 

Wildland fires occur under a variety of conditions and involve a range of plant-based fuels, 

which vary greatly across global to regional scales. Fires emit high levels of trace gases, 

including nitrogen oxides (NOx) and carbon dioxide (CO); I/SVOCs; and primary (directly 

emitted) PM. During plume evolution, I/SVOCs react to form ozone (O3) and secondary PM, 

thereby degrading air quality downwind.[4],[5] BB-PM can additionally influence the radiative 

balance of the atmosphere directly by scattering or absorbing solar radiation,[6] and indirectly by 

acting effectively as cloud condensation nuclei.[7, 8]  BB is the second largest source of I/SVOCs 

worldwide. Given the substantial emissions of I/SVOCs, the SOA formation potential from BB 

is large and may be the second largest source globally, behind emissions from biogenic 

sources.[9] This large potential for SOA production in smoke plumes is of relevance to the air 

quality and land management communities in the US, given their desire to minimize potential 

impacts of wildland fires on downwind communities, as well as on climate, while pursuing 

effective forest management practices. 

BB-PM has been difficult to model effectively in large-scale models used for air quality 

management (CTMs). First, there is a limitation associated with model inputs. Due to chemical 

diversity and complexity, identification and quantification of the gaseous organic compounds 

emitted from fires has been incomplete.[10] In a recent synthesis of laboratory and field 

measurements, nearly half of the gas-phase species detected could not be identified;[11] 

demonstrating the need for better characterization of smoke I/SVOCs. Next, there is a limitation 

in our understanding of the relevant SOA formation and aging mechanisms under ambient 
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conditions, particularly in smoke plumes. This has been discussed widely in the literature.e.g.,[12, 

13] Finally, there is the limited representation of SOA precursors and their SOA formation and 

aging mechanisms in CTMs.[14]  

While it is likely that a number of factors can lead to poor simulation of BB-SOA, in this project 

we focused on three particular limitations: 1) incomplete identification and quantification of 

gaseous compounds emitted from fires that may serve as SOA precursors; 2) incomplete 

understanding of the mechanisms that lead to SOA formation in smoke plumes; and 3) over-

simplified representation of emissions and processes in current models. Indeed, as articulated in 

the Smoke Science Plan: The Path Forward,[15] there is a great need for improved emissions 

inventories and validated smoke models. Emissions inventories need to account for variability in 

emissions as a function of burn and fuel characteristics. In addition, EFs are needed for all 

compounds/classes of compounds that can serve as SOA precursors under ambient conditions. In 

most models, BB-SOA formation proceeds by condensation of surrogates representing the gas-

phase oxidation products of a very small number of VOC precursors.[12, 16] Much recent research 

supports that many previously unconsidered precursors exist,[11, 17-19] and that mechanisms 

beyond gas/particle partitioning of semi-volatile compounds contribute to ambient SOA 

formation, including oxidation of lower volatility precursors and aqueous-phase chemistry.[20, 21]  

Materials and Methods 

Emission Factor Data Compilation and Analysis 

This section provides an overview of the procedure for generating the speciated organic carbon 

gaseous EF database using FLAME-IV data. For a more detailed description see Hatch et al.[1] 

Calculated EFs using open-path Fourier-transform infrared spectroscopy (OP-FTIR),[22] proton-

transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS),[23] two-dimensional gas 

chromatography/time-of-flight mass spectrometry (GC×GC-TOFMS),[24] and one-dimensional 

gas chromatography (GC) of whole air samples (WAS) were merged into a single, combined BB 

emissions database. Overlapping measurements of the same species were counted only once to 

the best possible extent. Data reduction largely followed the approach described by Yokelson et 

al. [11] The OP-FTIR data were given precedence because the OP-FTIR is not subject to sampling 

line artifacts. To combine the PTR-TOFMS measurements with speciated data from the GC 

techniques, the EFs were compared at each chemical formula, summed over all corresponding 

isomers measured by the GC×GC-TOFMS and/or WAS instruments. If the PTR-TOFMS EF was 

more than 2× the integrated GC×GC-TOFMS or WAS EF, both measurements were retained, 

unless a negative artifact was known to affect the GC data (e.g., cartridge breakthrough), in 

which case only the PTR-TOFMS measurement was used in the combined EF database. This 

approach preserves speciated information while retaining the potential for additional unknown 

emissions unaccounted for by the GC techniques. For cases in which the PTR-TOFMS EF was 

less than 2× that of the GC×GC-TOFMS or WAS EF, the GC data were used to preserve isomer 

speciation and the PTR-TOFMS measurement was deleted from the synthesized EF database.  

However, if only one (predominant) isomer was observed in the GC dataset (e.g., C6H6, 

benzene), the higher EF was used. For isomer groups detected by both GC×GC-TOFMS and 

WAS, the GC×GC-TOFMS EFs were retained if many more isomers were observed by this 

technique; if the number of observed isomers was similar at a given molecular formula, the 

measurement yielding the higher total EF was used in the EF database.  
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Development of Speciation Profiles 

This section describes the process for taking the individual species measured during FLAME-IV 

and mapping them to model compounds for air quality model simulations. Specific emissions 

inventories were created for coniferous fuels and crops based on Stockwell et al.[22, 23] and 

supplemented with GC×GC-TOFMS data from FLAME-IV.[24]  The Stockwell et al.[22, 23] data 

are scaled to field MCE values; the GC×GC-TOFMS laboratory-based EFs were scaled relative 

to the Stockwell et al.[22, 23] methane emissions. Each of the individual compounds were then 

lumped into one of 34 MOZART-4[25] and one of 38 SAPRC-07[26] surrogate species based on 

the following: 1) estimated OH reactivity, and 2) oxidation product distribution ([27], IUPAC 

Atmospheric Chemical Kinetic Data Evaluation, http://iupac.pole-ether.fr/). This mapping to 

surrogates and the resulting speciation profile allow the explicit compounds identified during 

FLAME-IV to be modeled using simplified chemical mechanisms and lumped surrogate species 

within air quality modeling frameworks, including AIRPACT.  

0-D Modeling 

This section describes the 0-D modeling approaches, including development of mechanisms and 

parameterizations for SOA formation and processing. Monoterpenes and furan/furan derivatives 

were the two compound classes that were selected for the box modeling efforts. For the 

monoterpenes, though SOA formation has not been studied for a diverse number of specific 

compounds, enough information about their general reactivity exists such that they can be treated 

robustly in a semi-explicit model. We used the model, GECKO-A (Generator of Explicit 

Chemistry and Kinetics of Organics in the Atmosphere), to predict SOA formation from different 

monoterpenes. GECKO-A has two components: an explicit chemical mechanism generator and 

an SOA box model.[28] The mechanism generator generates semi-explicit gas-phase oxidation 

mechanisms for individual compounds under general atmospheric conditions, while the SOA box 

model simulates SOA formation from individual precursors based on their generated reaction 

schemes.[28-30] In the absence of experimental data, reaction rate constants and/or products are 

estimated based on structure/activity relationships (SARs).[29] Gas-particle partitioning of those 

products is calculated assuming thermodynamic equilibrium with activity coefficients = 1. The 

SOA box model does not include representation of heterogenous/aqueous reactions in its current 

form, nor non-equilibrium partitioning. The modeling simulation results were fit using the 

volatility basis set (VBS) framework,[31] similarly to how one would fit chamber data using the 

same approach, to generate SOA modeling parameters. We note that JFSP funding was used to 

send a graduate student to train directly with the developers of GECKO-A. Outside of the 

developers, we are the first group to run GECKO-A, and the first to apply it for analysis of SOA 

formation from BB-derived precursors.  

The other class of prioritized compounds, furan/furan-derivatives, could not be robustly 

represented using GECKO-A due to the lack of existing data/reliable SARs for such compounds. 

Therefore, we leveraged this JFSP project to start another project to provide the fundamental 

information ultimately required to develop the detailed models from which parameterizations can 

be derived. With that funding, we developed a chemical mechanism for furan/methylfurans in 

SAPRC. This will be published soon and available for application in CMAQ and other models. 

This project also sought to evaluate non-traditional mechanisms for SOA formation (e.g., 

heterogeneous reactions, including accretion, and oxidation of lower volatility precursors). 
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Consideration of the oxidation of lower volatility precursors was achieved by first identifying the 

relevant precursors, and then treating them in chemical mechanism models as described above. 

Heterogeneous reactions can be treated with varying levels of complexity. The latest CMAQ 

model (v.5.2) has a highly simplified mechanism built in that converts gaseous organic carbon to 

particulate organic carbon, which represents all such non-traditional mechanisms for SOA 

formation. For wildfires, this is only applied to evaporative emissions of primary OA.[32] Thus, a 

single volatility distribution for all combustion primary OA is assumed, and a fraction of the 

gaseous carbon (following dilution) is oxidized to form lower volatility compounds using a fixed 

rate constant. We developed a framework that also allows consideration of non-traditional 

mechanisms, which can work on individual compounds or lumped surrogates.[33] We presented a 

set of equations that can be used to describe the contribution of monomers vs. accretion products 

(dimers) to SOA formation. The formation of dimers serves to reduce the effective volatility of 

the monomer, thus promoting SOA formation. This method requires knowledge of or estimation 

of the extent of accretion product formation. It was determined that at this time, there are not 

sufficient data to constrain these complex representations. They can be used to assess sensitivity, 

but should not be thought of as predictive at this stage and thus will not be further discussed. 

Air Quality Modeling 

The section describes the approach for the air quality model sensitivity studies. We used 

Washing State University's 3-D regional air quality modeling system for the Pacific Northwest 

(PNW) called AIRPACT,[34, 35] run at 4×4-km resolution with 37 vertical layers. The modeling 

framework utilizes SMARTFire  and BlueSky[36] for fire information and emissions, 

respectively; MEGAN[37] for biogenic emissions; SMOKE[38] for anthropogenic emissions 

processing; WRF[39] for meteorology; and CMAQ[40] for atmospheric chemistry and transport. 

The first set of AIRPACT modeling simulations was conducted for the period of August 2015 

with CMAQv5.0.2 (April 2014 release). The modeling simulations were then redesigned to use 

the latest version of CMAQv5.2 (June 2017 release), which has a significantly revised SOA 

formation module; and to better represent plume height and total organic carbon emissions 

(gaseous and particulate). In addition, the modeling simulations were conducted for the period of 

August 2013, in which there was a much more complete set of observational data with which to 

compare the model simulations. The revised modeling approach required resetting of emissions, 

meteorology inputs, and boundary chemical conditions. Predicted SOA, primary OA, and PM2.5 

levels were then compared with observations of total PM and total OA. Table 1 below lists the 

base and sensitivity simulations performed with CMAQv.5.2. 

Table 1: Description of AIRPACT w/CMAQv. 5.2 Sensitivity Simulations  

 Gaseous NMOCs PM2.5 

Fire Emissions 

Scenarios 

Emission    

Factor 

Speciation 

Profile 

Emission    

Factor 

Speciation 

Profile 

  BASE 
Default           

(32.4 g/kg) 

Default Default             

(12 g/kg) 

 Default 

  SENS1  × 1.54 Updated Default Default 

  SENS2 × 1.54 Updated × 2.23 Default 

  SENS3 × 1.54 Updated × 2.23 Updated 
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Results and Discussions 
Emission Factor Data Compilation and Analysis 

Relevant Objectives: 1, 2, 3 

All of the individual compounds measured during FLAME-IV and included in the 

comprehensive gaseous NMOC EF database, developed in this project, were binned by estimated 

saturation vapor concentration (C*); an example of the resulting EF volatility distribution is 

shown in Fig. 1 for ponderosa pine smoke (for other fuels see Hatch et al. [1]). The volatility of 

compounds spans 9 

orders of 

magnitude; 7 of 

which contain 

significant mass. 

Relative to the other 

fuels, the pine 

smoke sample had 

the largest fraction 

of IVOCs, ~11% of 

the total gaseous 

NMOC EF (6-8% 

for the other fuels). 

For comparison, 

compounds typically 

measured in BB smoke 

(based on Table 1 in 

Akagi et al.[10]) and those 

included in the EPA 

SPECIATE emission 

inventory [41] are also included in Fig. 1.  The volatility of the typically measured compounds and 

those in the SPECIATE emissions inventory span 8 orders of magnitude; however compounds in 

only 5 bins contribute significantly to the overall EF in both cases.  

Emission inventories are used in air quality models to distribute the total gaseous NMOC among 

the suite of compounds included in the inventory; which are then mapped to lumped model 

species for treatment in gas-phase chemical mechanisms and SOA modules. Since the fraction of 

each bin accounted for by the SPECIATE inventory decreases with decreasing volatility (Fig. 1), 

application of the SPECIATE inventory would result in a group of model compounds with a 

significantly higher mean volatility than the application of our new inventory.  In particular, 

IVOCs were almost entirely absent; less than ~1% of the IVOC EF we measured for pine smoke 

was accounted for by the compounds included in the Akagi et al. compilation (based primarily 

on field studies)[8] and the SPECIATE inventory.   

We were able to identify and quantify a large fraction of the unspeciated mass highlighted by the 

Akagi et al.[10] compilation. For the top 100 compounds from each fuel, which account for ~90% 

of the total gaseous NMOC EF for each fuel (87-91%), the measured EF was scaled by the 

Figure 1: Emission factors of gaseous non-methane organic compounds 
determined in pine smoke, as a function of volatility. Red (+) and blue (∆) 
markers indicate the contribution from typically measured compounds 
based on (Akagi et al., 2011 [8]) and the EPA SPECIATE emission inventory 
[39]; numbers indicate the number of compounds in each bin. 
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corresponding rate constant for reaction with OH to determine the most reactive compounds and 

by carbon number as a rough proxy for total potential SOA contribution. These scaled EFs were 

termed ‘reactive carbon’. Compounds were then sorted by the number of publications reporting 

an SOA yield via OH-radical oxidation (as of May 2016).  Results are shown in the Figs. 2 and 3 

for pine and black spruce smoke, respectively, illustrating that only 12-22% of the reactive 

carbon is associated with very well studied compounds (5+ publications). In contrast, between 

55% and 77% of the reactive carbon was associated with compounds for which SOA yields are 

unknown or understudied (0-1 publications). Of the understudied compounds, those most likely 

to form SOA are outlined in gray in the pie charts of Figs. 2 and 3. Thus one important finding is 

that even with the improved speciation measurements and compilation of a comprehensive EF 

database, critical data for modeling BB SOA formation are missing for a significant fraction of 

the potentially reactive material.  

 

. 

 

 

 

 

 

 
 

Figure 2: Assessment of SOA yields for compounds detected in the ponderosa pine fire. Pie chart: 
Classification of reactive carbon (see text) by the number of publications reporting an SOA yield 
following hydroxyl radical oxidation. The gray-outlined wedge represents the understudied compounds 
with the greatest potential to form SOA. Bar chart: Percent contribution of the top 10 compounds 
included in the gray wedge. 

Figure 3: Same as above for black spruce. 
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Many of the understudied potential precursors are furan derivatives and polyunsaturated aliphatic 

hydrocarbons; only ~10% to 28% of the reactive carbon contributed by understudied precursors 

is attributed to aromatic compounds. Thus the largest gaps in known SOA yields relevant for BB 

are associated with non-aromatic compounds (furans notwithstanding).  To better identify 

specific candidates for future smog chamber studies, the top 10 understudied potential precursors 

are shown in the corresponding bar charts as a percentage of the reactive carbon included in the 

gray-outlined wedge (Figs. 2 and 3 for pine and black spruce, respectively; see Hatch et al. [1] 

for other fuel types). Given the ubiquity and potential importance of these compounds, future 

smog chamber experiments with these species may significantly help to narrow knowledge gaps 

regarding SOA yields of organic compounds in BB emissions.       

Relevant Deliverables  

Deliverable 1: EFs for FLAME-IV fuels as a function of burn and fuel characteristics. The 

FLAME-IV EFs largely were evaluated as a function of fuel type. The advantages of combining 

data from a number of instruments outweighed evaluating fewer samples (limited by overlapping 

data). With such a limited number of samples, EFs could not be sufficiently evaluated as a 

function of MCE. However, Stockwell et al.[20,21] and others have shown robust relationships 

between MCE and EF for a number of gaseous NMOCs. In recent work (unpublished), we have 

found that the relationship between MCE and EF can be complicated by diversity in fuel 

characteristics (e.g., canopy vs. woody debris) and particle loading (i.e., gas-particle partitioning 

of I/SVOCs).  

0-D Modeling 

Relevant Objective: 3 

SOA from ten monoterpene precursors, including camphene, was modeled using GECKO-A. 

These modeling studies represent the first studies of SOA formation from camphene, which was 

one of the dominant monoterpenes in black spruce emissions (and also significant in other 

coniferous fuels). Atmospheric variables and initial conditions were defined to represent a 

“typical” chamber study, since chamber studies are widely used to evaluate the potential for 

individual precursors to form SOA and to develop SOA model parameterizations. Atmospheric 

variables were set as follows: temperature = 298K; relative humidity = 5%; aerosol seed = 1 µg 

m−3; and solar zenith angle (required to compute the photolysis frequencies) = 50o. The initial 

concentrations of precursor and oxidants were as follows: monoterpene = 50 ppb, NO = 50 ppb, 

formaldehyde = 50 ppb, and ethane = 10 ppm. We note that formaldehyde and ethane are not 

typically added in chamber studies; however, they control the gas-phase reactivity of compounds 

(and as such, the simulations are more able to represent the atmospheric reactivity of emitted 

compounds, particularly those that are less reactive). The formaldehyde and ethane do not 

directly participate in SOA formation (with the exception of generating oxidants). 

The left two panels in Fig. 4 illustrate predicted SOA formation for camphene (pink trace), α-

pinene (green trace), and limonene (orange trace). The top left panel illustrates SOA mass as a 

function of time. Limonene is known to have one of the highest (if not the highest) SOA yields 

among studied monoterpenes. Camphene is predicted to form significant amounts of SOA in 

these controlled reactivity simulations. The bottom left panel illustrates SOA mass as a function 
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of reacted precursor concentration. Such plots are useful for evaluating the relative volatility of 

the predicted products, as oxidation products with lower volatility will start to form SOA at 

lower reacted hydrocarbon levels. Interestingly, camphene is predicted to form the lowest 

volatility precursors.  

SOA mass formation vs. reacted hydrocarbon concentration are needed to develop SOA 

parameterizations using the VBS approach. We ran another ten simulations for each 

monoterpene precursor over a range of initial precursor concentrations and used the maximum 

predicted SOA concentration at each reacted hydrocarbon concentration to optimize VBS 

parameters (a minimum of four simulations are needed for each parameterization). The volatility 

bins are constrained by the predicted SOA concentrations. We chose a 5 bin VBS representation 

(C* = 0.01-100), but this choice is flexible and can be modified to best fit the chosen air quality 

model framework.  

 

Figure 4: Predicted SOA formation for camphene (pink trace), α-pinene (green trace), and limonene 
(orange trace) using GECKO-A, as a function of time (top left) and reacted hydrocarbon (bottom left); 
particle phase composition of camphene SOA as a function of carbon number (top right) and number of 
functional groups (bottom right). 

Since evaluation of SOA mass alone can be misleading from the perspective of model validation, 

we also examined the properties of the predicted particle-phase compounds, which can be 

compared with measurements as they become available. The top right panel in Fig. 4 illustrates 

the predicted mass contribution of products with 2 to 10 carbon atoms from camphene oxidation. 

Interestingly, the model predicts that compounds with 7 and 10 carbon atoms contribute the most 

to SOA. In the bottom right panel, the mass contribution of carbon number (nC) = 7 compounds 

by the number of functional groups is shown for camphene. The model predicts a large number 
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of compounds with 5 functional groups, which would have low volatility and thus support the 

observations from the lower left panel. 

Relevant Deliverables  

Deliverable 2: Evaluation of SOA formation from newly identified S/VOC precursors. The 

GECKO-A model is an excellent tool for evaluating SOA formation via oxidation from some of 

our newly identified precursors. Monoterpenes are particularly well represented in GECKO-A. 

Some of the other classes of compounds (e.g., furans) can not be well represented in GECKO-A 

at this time. We are evaluating approaches for also considering heterogeneous pathways for SOA 

formation using GECKO-A.  

Deliverable 3: Parameterizations for SOA models. VBS parameterizations can be easily derived 

using an optimization algorithm from the GECKO-A model predictions. We have developed 

VBS parameters for ten monoterpenes, including camphene. The parameterizations are highly 

sensitive to initial conditions. We are now working to optimize our simulations to best represent 

ambient and fire conditions; from these simulations will we develop and publish our derived 

SOA parameters.  

Air Quality Modeling 

The inclusion of the newly identified and quantified NMOCs markedly changes the speciation 

profiles of the lumped model surrogates, as shown in Fig. 5. In panels a and b, each of the  

MOZART-4 surrogate species is represented by a colored wedge; only the top 5 (by mole 

fraction) are labeled. The 

offset wedges indicate a 

surrogate species with >3 

carbon atoms (>C3 

aldehydes, alkanes and 

alkenes; benzene; toluene; 

xylene; monoterpenes; 

isoprene; methyl ethyl 

ketone; methacrolein, phenol, 

xylol, and cresol). The 

updated profile (Fig. 4b) has 

a higher percentage of >C3 

compounds, particularly >C3 

alkenes (“BIGENE”) and 

lumped monoterpenes. It is 

expected that such changes in 

the NMOC distribution (as 

represented by the 

MOZART-4 surrogates), 

would result in changes in 

chemical production rates 

and concentrations of 

compounds of interest from 

Figure 5: Speciation profile for coniferous fuels: a) default emissions 
inventory, b) updated emissions inventory, c) default-likely SOA 
precursors, and d) updated-likely SOA precursors. In panels a and b, 
surrogate compounds are represented as percentages of the total 
speciation profile; in panels c and d, surrogate compounds are 
represented as moles of species per area burned and pie charts are 
scaled to illustrate relative mass amounts. 
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an air quality and climate perspective. This may be better evidenced by the results in panels c 

and d. Panels c and d illustrate the relative mass fractions of those surrogates that are likely SOA 

precursors in the default  (Fig. 4c) versus updated (Fig. 4d) profiles. In the MOZART-4 CTM 

benzene, toluene, xylene, monoterpenes, and isoprene serve as SOA precursors. While the >C3 

alkanes and alkenes do not serve as SOA precursors in MOZART-4, 5% (by EF) of the >C3 

alkane and 15% (by EF) of the >C3 alkene surrogates have carbon numbers > 10 and are thus 

likely to form SOA (e.g.,[18]). The updated profile has a factor of ~3 greater total mass allocated 

to likely SOA precursors. While the updated speciation profiles are shown for the MOZART-4 

gas-phase chemical mechanism, the results look very similar for the SAPRC gas-phase chemical 

mechanism, which was used in the AIRPACT model simulations. Speciation profiles are 

available for MOZART-4 and SAPRC, based on our compiled EF database for coniferous fuels 

and crops. 

SOA and PM2.5 were predicted using the AIRPACT modeling framework with CMAQv.5.0.2 

and CMAQ v.5.2. Fig. 6 illustrates predicted SOA (left panels) and PM2.5 (right panels) using 

the default SPECIATE emissions inventory (top panels) and our updated emissions inventory 

(bottom panels) with CMAQ v.5.0.2. The simulation period covers August 2015; active fires are 

shown as red spots in the middle figure. As can be seen in the left panels, the predicted SOA 

concentrations increase with the updated emissions; the maximum SOA increases by a factor of 

2. However, as can be seen in the right panels, the predicted PM2.5 is statistically similar and the 

negative bias in the model predictions is not mitigated. Further investigation and comparison 

with model results demonstrated that CMAQv.5.0.2 was significantly underestimating the 

contribution of SOA to PM2.5, and thus the relative insensitivity to changes in predicted SOA 

concentrations. 

 

Figure 6: Predicted SOA and PM2.5 using CMAQv.5.0.2 in AIRPACT. 



16 
 

Fig. 7 illustrates predicted PM2.5 concentrations (circle size) and model bias (color scale) using 

the default SPECIATE emissions inventory (left panel) and our updated emissions inventory 

(right panel) with CMAQv.5.2. The sensitivity case also includes an increase in total NMOC 

emissions and fractional contribution of organic carbon to PM2.5 (see Table 1) based on Liu et 

al.[2] The simulation period covers August 2013, in which observations from the BBOP field 

campaign were available. With the model updates in CMAQv.5.2, the overall negative bias is 

reduced, and at many sites there is an overprediction of PM2.5. However, CMAQv.5.2 better 

represents the contribution of BB-derived SOA to total PM2.5. 

 

Figure 7: Predicted SOA and PM2.5 using CMAQv.5.0.2 in AIRPACT. 

Relevant Deliverables  

Deliverable 4: Modifications and/or additions needed in emissions inventories and SOA models 

to better represent SOA from wildland fires. The updated EFs and associated speciation profiles 

significantly increased predicted SOA, and in CMAQv.5.2, also PM2.5. Further measurements 

and model development are needed to refine parameterizations and minimize model bias. 

Scientific Delivery 

This final project report represents the efforts of all three principal investigators (Barsanti, Lamb, 

and Yokelson), as well as two graduate students, two postdocs, and two faculty (Chung, Lee) 

that were involved over the course of the project. We published a total of two core manuscripts 

(with one additional manuscript under review), and one with JFSP collaborators. Two additional 

manuscripts are in preparation. We gave 10 presentations at scientific conferences (8 talks + 2 

posters), and collaborators gave another 5 presentations. We held two in-person workshops. 

Finally, PI Barsanti gave 5 additional presentations. One of these presentations kicked-off a 

Forest & Fire Learning series, hosted by the Mountain Studies Institute in Durango, CO; the 

other was followed by a panel discussion, which included wildland firefighters and land 

managers, hosted by the San Juan Headwaters Forest Health Partnership in Pagosa Springs, CO.  
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Key Findings and Implications for Management/Policy and Future Research 
Field measurements (e.g., BBOP, Zhou et al.[3], Liu et al.[2]) and comparison of these 

observations with regional air quality models clearly demonstrate that a large fraction of primary 

PM2.5 emitted from fires is organic and that a large fraction of PM2.5 in fire-impacted regions 

contains a significant fraction of secondary organic aerosol (SOA). For this project we assembled 

a multidisciplinary team to perform an integrated analysis specifically of the importance of 

missing SOA precursors and processes on model-predicted PM2.5 from wildland fire emissions. 

As the name suggests, SOA is a secondary pollutant formed through oxidation of gaseous 

organic precursors and multiphase reactions of the oxidation products. The relative contribution 

of SOA to PM2.5 can influence the spatial and temporal distribution of PM2.5 as well as the air 

quality and climate impacts. Thus, accurate representation of SOA formation from wildland fires 

is important to both fire and air quality management communities.  

As step one, we performed/compiled the most extensive and detailed speciated measurements of 

gas-phase emissions of organic gases emitted by fires to date. This confirmed that a large number 

of important SOA precursors are not being represented in current air quality models, including 

AIRPACT (Obj. 1 and 2). We found that the quantities of gas-phase organic compounds, 

especially those that are of lower volatility and important SOA precursors, may be significantly 

underestimated in models by using EFs that are not scaled based on the gas-particle phase 

distribution (Obj. 1 and 3). We used a comprehensive screening procedure to show which of the 

newly identified compounds were likely to form significant SOA (Obj. 2). For several of these 

key precursors we used advanced box model simulations to explore their SOA yield and the 

associated chemical mechanisms. However, for most of the newly identified compounds, the 

lack of a known reaction mechanisms and SOA formation yields precluded completely explicit 

representation and development of parameterizations for AIPACT.  

Development and validation of model parameterizations, including those used to represent the 

formation of SOA in air quality models, requires a significant investment of resources. Therefore 

it was important for us to evaluate the sensitivity of predicted PM2.5 to changes in predicted SOA, 

and the extent to which improvements in the model representation of SOA precursors and 

processes improved predictions of PM2.5 (Obj. 4-6). We found that model predictions of SOA 

formation were highly responsive to our upgraded fire emissions, but the PM2.5 response 

depended strongly on the details of the SOA modules (i.e., the version of CMAQ used, 5.0.2 vs. 

5.2). When coupled with our updates to wildland fire emissions, AIRPACT with CMAQv5.2 

better reproduced the field-measured contribution of SOA to PM2.5.  The number of sites with 

negative biases in PM2.5 was decreased; while the number of sites with positive biases increased. 

Thus, including the new precursors and processes improved SOA and PM2.5 predictions, but 

further refinements and constraints are needed.  

In summary, given the contribution of fire-derived SOA to PM2.5 and model sensitivity of PM2.5 

predictions to both SOA precursors and parameterizations; further mechanistic data, field 

validation, and parameterizations are still needed for air quality models (Obj. 6). With these 

additional steps, more accurate representation of SOA formation from wildland fires can likely 

be achieved.  
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Hatch, L.E., Yokelson, R. J., Stockwell, C.E., Veres, P. R., Simpson, I. J., Blake, D. R., Orlando, 

J. J., Barsanti, K. C. Multi-instrument comparison and compilation of non-methane organic 

gas emissions from biomass burning and implications for smoke-derived secondary organic 

aerosol precursors. Atmospheric Chemistry & Physics, 17: 1471, 1489. 2017 

Bian, Q., Jathar, S. H., Kodros, J. K., Barsanti, K. C., Hatch, L. E., May, A. A., Kreidenweis, S. 

M., Pierce, J. R. Secondary organic aerosol formation in biomass-burning plumes: 

Theoretical analysis of lab studies and ambient plumes. Atmospheric Chemistry & Physics 

doi:10.5194/acp-2016-949 

In Review 

Ahern, A., Robinson, E., Tkacik, D., Saleh, R., Hatch, L., Barsanti, K. Stockwell, C., Yokelson, 

R., Presto, A., Robinson, A., Sullivan, R., Donahue, N. Production of secondary organic 

aerosol during aging of biomass-burning smoke from fresh fuels and its relationship to VOC 

precursors. Journal of Geophysical Research-Atmospheres, 2018JD029069 

In Preparation 

Afreh, I., Aumont, B., Camredon, M., Valorso, R., Barsanti, K. Predictions of SOA Formation 

and Composition from Camphene using GECKO-A. 

Jiang, J., Carter, W.P., Cocker III, D.R., Hatch, L., Barsanti, K. Developing the SAPRC Gas-

Phase Chemical Mechanism for Furan and Methylfurans. 

Conference Proceedings 

Barsanti, K., Hatch, L., Wiedinmyer, C., Orlando, J., Knote, C., Emmons, L., Stockwell, C., 

Yokelson, R., Veres, P. Evaluating Complexity in Fire Emissions Modeling: Is More Better? 

21st Annual Emissions Inventory Conference, Sand Diego, CA. April 2015. Extended 

Abstract: https://www3.epa.gov/ttn/chief/conference/ei21/session10/barsanti.pdf 

Conference Abstracts 

Afreh, I., Aumont, B., Camredon, M., Valorso, R., Barsanti, K. Developing Model Surrogates 

for Monoterpenes to Improve Predictions of Secondary Organic Aerosol. 10th International 

Aerosol Conference, St. Louis, MO, September 2018. Abstracts:  

http://aaarabstracts.com/2018IAC/AbstractBook.pdf 

Hatch, L., Liu, Y., Rivas Ubach, A., Shaw, J., Lipton, M., Barsanti, K. Advanced 

Characterization of Semi-Volatile Compounds Emitted from Biomass Burning. American 
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Geophysical Union Fall Meeting, New Orleans, LA, December 2017. Abstracts: 

https://agu.confex.com/agu/fm17/meetingapp.cgi/Person/51266 

Nergui, T., Lee, Y., Chung, S. H., Lamb, B. K., Yokelson, R. J., and Barsanti K.: Integrating 

measurement based new knowledge on wildland fire emissions and chemistry into the 

AIRPACT air quality forecasting for the Pacific Northwest, AGU Fall Meeting Abstracts, 

December 2017. Abstracts: https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/224705 

Barsanti, K., Hatch, L., Afreh, I., Aumont, B., Camredon, M., Orlando, J., Wiedinmyer, C. 

Integrating Biomass Burning Emissions Measurements and Predictive Models of Secondary 

Organic Aerosol Formation. International Aerosol Modeling Algorithms Conference. Davis, 

CA, December 2017.  

Barsanti, K., Hatch, L., Lee, Y., Chung, S., Lamb, B. K., Wiedinmyer, C., Yokelson, R. How 

Does Chemical Complexity in Biomass Burning Emissions Influence Air Quality? 2nd 

International Smoke Symposium, Long Beach, CA, November 2016.  

Barsanti, K., Hatch, L., Lamb, B. K., Wiedinmyer, C., Yokelson, R., Chung, S. H. How the 

Characterization and Model Representation of Biomass Burning Emissions Affect SOA 

Predictions. Association for Aerosol Research Annual Conference, Portland, OR, October, 

2016. Abstracts:  http://aaarabstracts.com/2016/AbstractBook.pdf 

Barsanti, K., Hatch, L., Yokelson, R., Stockwell, C., Emmons, L, Orlando, J., Knote, C., 

Wiedinmyer, C.  Incorporating Detailed Chemical Characterization of Biomass Burning into 

Air Quality Models. American Geophysical Union Annual Conference, San Francisco, CA, 

December 2015. Abstracts: https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/58803 

Barsanti, K., Orlando, J., Hatch, L., Stockwell, C., Veres, P., Yokelson, R., Emmons, L., 

Wiedinmyer, C. Evaluating Complexity in Fire Emissions Modeling-Is More Better? 21st 

Emissions Inventory Conference, San Diego, CA, March 2015. Presentation:  

https://www3.epa.gov/ttn/chief/conference/ei21/session10/barsanti_pres.pdf 

Led by Collaborators 

Pierce, J. R., Bian, Q.-J., Kreidenweis, S. M., Kodros, J. K., Jathar, S., May, A., Hatch, L., 

Barsanti, K. Investigation of particle and vapor wall-loss effects on controlled wood-smoke 

smog-chamber experiments. 5th International Fire Behavior and Fuels Conference, Portland, 

OR, April, 2016  

Bian, Q., Jathar, S., Kodros, J., Barsanti, K., Hatch, L., May, A., Kreidenweis, S., Pierce, J. 

Secondary organic aerosol formation in biomass-burning plumes: Theoretical analysis of lab 

studies. American Association of Aerosol Research Annual Conference, Portland, OR, 

October, 2016  

Bian, Q., Pierce, J. R., Kodros, J. K., Kreidenweis, S. M., Jathar, S., May, A., Barsanti, K., 

Hatch, L., International Smoke Symposium, Secondary organic aerosol formation in 

biomass-burning plumes: Theoretical analysis of lab studies. Long Beach, CA, November, 

2016 

Pierce, J. R., Bian, Q.-j., May, A., Jathar, S., Kodros, J. K., Barsanti, K., Hatch, L., Kreidenweis 

S. M., “Exploring the evolution of biomass-burning aerosol in chambers and the 

atmosphere”, University of Colorado (Invited Seminar), Chemistry, October 2016. 
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 Kreidenweis, S. M., Pierce, J. R., Bian, Q.-j., May, A., Jathar, S., Kodros, J. K., Barsanti, K., 

Hatch, L., “Biomass burning aerosol: Emissions, evolution, and atmospheric impacts,” 

seminar to be presented in the William G. Lowrie Department of Chemical and Biomolecular 

Engineering, The Ohio State University, September 7, 2017 

Posters 

Jiang, J., Carter, W.P., Cocker III, D.R., Hatch, L., Barsanti, K. Developing the SAPRC Gas-

Phase Chemical Mechanism and Chamber-Based SOA Parameterizations for Evaluating 

Biomass-Burning Derived SOA from Furan and Furan Derivatives. 10th International 

Aerosol Conference, St. Louis, MO, September, 2018  

Afreh, I., Aumont, B., Camredon, M., Valorso, R., Barsanti, K. Development of Model 

Surrogates for Monoterpenes to Improve Predictions of Secondary Organic Aerosol. Gordon 

Research Conference (GRC), Les Diablerets, Switzerland, June 2018   

Presentations/Webinars/Other Outreach 

Afreh, I., Aumont, B., Camredon, M., Valorso, R., Barsanti, K. Development of Model 

Surrogates for Monoterpenes to Improve Predictions of Secondary Organic Aerosol. Gordon 

Research Seminar (GRS), Les Diablerets, Switzerland, June 2018  

Barsanti, K. Managing Chemical Complexity in Predictive Models of Secondary Organic 

Aerosol. Informal Symposium on Kinetics and Photochemical Processes in the Atmosphere. 

Pasadena, CA, March 2018 (invited speaker) 

Barsanti, K. Smoky Air: Should We Care? Two keynote presentations: 1.. San Juan Headwaters 

Forest Health Partnership, Pagosa Springs, CO, March 2018 (presentation and panel 

discussion); 2. Mountain Studies Institute Durango, CO, March 2018 (presentation)  

Barsanti, K. Understanding Impacts of Wildfires and Vehicles to our Environment and Health. 

UCR Board of Trustees. Riverside, CA, February 2018 

Barsanti, K. Berkeley Atmospheric Science Center Seminar. Embracing Chemical Complexity in 

Biomass Burning Emissions and Mechanistic Models. Berkeley, CA, February 2017 

Barsanti, K. Department of Atmospheric Sciences Seminar, Colorado State University. 

Exploring Chemical Complexity in Biomass Burning Emissions and Air Quality Models. Fort 

Collins, CO, March 2016 

 

 


