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Abstract 
To meet the data requirements of physics-based fire models and FASMEE objectives, traditional 

fuel and consumption measures need to be integrated with spatially explicit, three-dimensional 

data. One of the challenges of traditional fuel measurement techniques is that they must either 

remove or alter the fuels that are a primary determinant of fire behavior and smoke production. 

Remote measurement methods can non-destructively provide three-dimensional, point-cloud 

representations of fuels but still rely on traditional measures to quantify fuel loads, surface-area-

to-volume ratios, fuel moistures and other intrinsic properties of fuels. Coupling traditional 

measurements with remotely sensed datasets can allow for scaling up observations from fine-

scale inputs to physics-based models to coarse scale fuels characterization required by smoke 

models such as WRF-SFIRE-CHEM and DaySmoke. Hierarchical sampling across a range of 

spatial scales can also provide an important sensitivity analysis of what scale of observations is 

needed for models of interest. 

 

In the Phase I planning phase of the Fire and Smoke Model Evaluation Experiment, the Fuel and 

Consumption discipline team specified a multi-scale fuel measurement and modeling framework 

to characterize pre-burn and post-burn fuels in proposed large-scale prescribed burn units in the 

southwestern (SW) and southeastern (SE) United States. As proposed by the Fuels Discipline 

team, traditional measures of fuels will be integrated with remotely-sensed point cloud data to 

provide estimates of pre- and post-fire fuel mass, volume, or density in physical measurement 

units and in 3D within the same domain as physics-based fire models. The density and extent of 

the point cloud and ground-based measurements will be contingent on fuel type and structure, 

but in general, sites with fine surface fuel beds that vary at sub-meter scales, typical of the SE 

sites, will be characterized at higher resolution (≤ 1 m), whereas sites with fuel elements that 

vary at the scale of individual trees, which is more typical in the candidate SW sites, will be 

characterized at coarser resolution (≥ 1 m). Across all burn units, pre- and post-burn overstory 

tree crown structure will be spatially characterized using airborne laser scanning (ALS), 

otherwise known as LiDAR. Where finer-scale surface fuels are the focus, particularly in the SE, 

Terrestrial Laser Scanner (TLS) and Unmanned Aerial Systems (UAS) derived point clouds will 

sample fuels at higher resolution within limited extents. Sampling will be conducted in Highly 

Instrumented Plots (HIPs) or along transects within each operational prescribed burn.  
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I. Objectives 
Our proposal directly responded to the JFSP Task Statement to select a Discipline Lead to guide 

the fuels and consumption discipline for the FASMEE project. Our central objective was to 

develop measurements, modeling, and mapping approaches needed to generate 3D maps of 

heterogeneous fuel beds at hierarchical scales optimized for input into fire and smoke models. 

The Task Statement also outlined the following roles for each discipline lead: 

 Providing expertise to the Scientific Leadership Team for their discipline area;  

 Reaching out to the larger scientific community in their area for additional information as 

needed;  

 Proposing an observational study design for observations in their discipline area;  

 Working in conjunction with the modelers and the rest of the Scientific Leadership Team 

to validate their proposed study design;  

 Writing up the study design and creating a detailed set of required observational 

specifications;  

 Helping develop a Funding Opportunity Notice to identify and select observational 

groups;  

 Reviewing observational group proposals and integrating selected proposals into the final 

study plan; and  

 Building the final Study Plan. 

 

Our team participated in all collaborative aspects of FASMEE Phase I including 1) providing 

expertise on fuels, consumption and proven multi-scaled remotely sensed and field sampling 

methods; 2) consulting other scientists and instrument specialists on feasibility of various 

measurement techniques, including investment into analyses of existing datasets for developing 

point-cloud based fuel modeling methods; 3) developing a observational study design for fuels 

and consumption; 4) closely collaborating with modelers, other discipline team leads and the 

FASMEE Phase I Leadership team through bimonthly meetings, field trips and planning/writing 

retreats; 5) proposing a detailed set of observational requirements, and helping to draft early 

drafts of the FASMEE study plan.  

 

II. Background  
The Phase I FASMEE fuels and consumption discipline team was formed to provide 

observational requirements for the Phase II measurement campaign. The Fuels and Consumption 

team worked closely with the other disciplines (Fire Behavior and Energy, Plume Dynamics and 

Meteorology, Smoke and Emissions, and Fire and Smoke Modeling teams) to develop 

measurements requirements and the FASMEE study plan. Because fuels and consumption are 

key inputs for all fire and smoke models, we focused on fuels characterization needs for the most 

data-intensive models to ensure that minimum observational requirements for fuels and 

consumption would satisfy the entire range of fire and smoke models -- from relatively simple 

operational models such as BehavePlus (Andrews et al. 2005), FlamMap, Consume (Prichard et 

al. 2007) and FOFEM (Reinhardt 1997), to complex, physics-based models such as WRF-

SFIRE-CHEM (Mandel et al 2011, 2014), WFDS (Mell 2007, 2009) and FIRETEC (Linn et al. 

2002, 2005). 

 

Based on modeling needs from each fire and smoke modeling team, the FASMEE fuels and 

consumption team addressed: 
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1. Basic fuel properties including fuel type, biomass by fuel category, structure (height/depth 

and cover, and moisture content).  

2. Three-dimensional characterization of pre-burn and post-burn fuels 

3. Pre-and post- characterization of fuels to quantify consumption and combustion phase 

(flaming, smoldering and residual smoldering) and to be used as source characterization for 

smoke and emissions measurements. 

For spatial mapping and characterization of pre- and post-burn fuels, a nested sampling design 

can be tailored to the actual scale of fuel structure variation in each study site location. Airborne 

LiDAR provides synoptic coverage for mapping wall-to-wall overstory vegetation, and, with less 

sensitivity, lower-level canopy and surface vegetation layers. At smaller scales, multi- or 

hyperspectral imagery from UAS and/or towers/tethered balloons provide mid-scale fuels 

mapping and also assists with fuel type characterization and status (live/dead). Surface fuel 

components and fuel properties can be intensively sampled within HIPs or at systematic intervals 

along transects in sites with dense, multi-layered vegetation. Surface fuel measurements from 

accurately geo-located HIPs or transects can also be scaled up to make unit-level inferences.  

 

III. Materials and Methods 
3.1 Study area descriptions and locations  

Four candidate study areas have been selected for the FAMSEE experimental burns including 

two sites in the SE and two sites in the SW. FASMEE plans to conduct at least one large, 

operational prescribed burn in each region. 

 

Candidate locations in the SE include Fort Stewart (US Army Installation, SW of Savanna, GA) 

and the Savanna River Site (US Department of Energy, SE of Augusta, SC) (Figure 1). Sites will 

be targeted to have heavier than normal surface fuel accumulations with at least 3 years since fire 

(3-5 year rough) but are still representative of sites commonly burned in the region (southern 

pine forests with grass and shrub understories). The burn(s) will be conducted on large units (> 

500 acres) during conditions that favor a high-intensity surface fire and large plume 

development.  

 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Left panel: 4-year rough in a longleaf pine/loblolly pine forest, Fort Stewart. Right panel: >4 

year rough in a loblolly pine forest, Savannah River Site. 
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In the SW, candidate sites include the Richfield Ranger District of the Fishlake National Forest 

in Utah and the North Rim of the Grand Canyon/Kaibab National Forest which are managed 

through a collaboration between Grand Canyon National Park and the US Forest Service. The 

Fishlake site is a fire-excluded, mixed conifer and aspen forest, located at higher elevations 

(>7000 ft) on Monroe Mountain in the Richfield Ranger District. Surface fuels are comprised of 

heavy downed wood and forest floor fuel accumulations (60-100 Mg/ha) (Figure 2). The Kaibab 

site has two candidate forest types including high elevation mixed conifer with multi-layered 

canopy fuels and heavy surface fuels (>60 Mg/ha) (Figure 2) and lower elevation ponderosa pine 

forest with light surface fuels (~10 Mg/ha) (Figure 3). 

 

  
Figure 2. Left panel: Mixed conifer-aspen forest, Monroe Mountain Richfield District, Fishlake NF. 

Right panel: Mixed conifer-aspen forest, Tipover Unit, North Rim, Grand Canyon NP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Ponderosa pine forest, Jacob Lake, North Kaibab NF.  

 

3.2 Background: Three Dimensional Fuels Characterization 

LiDAR is currently the most advanced remote sensing technology for 3D characterization of 

vegetation and fuels. Point clouds capture the 3D spatial distribution of fuel elements like no 
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other method can, but do not directly measure fuel load or bulk density. Although measures of 

vegetation height, cover, and relative density can be derived directly from point cloud data 

without field data, traditional field measures of fuels in mass units are also needed to estimate 

fuel load and bulk density from point cloud data. Establishing this linkage between point cloud 

observations and field measurements is an essential step in calculations of fuel consumption 

(e.g., Mg/ha) that can be related to fire radiative energy and emissions.  

 

Successful evaluation of fire and smoke models requires accurate representation of fuels and 

environmental conditions at the time of the fire. To best leverage information across a series of 

burn experiments spanning different sites and diverse fuel types, as planned in the FASMEE 

project, it is highly desirable that the process used to represent fuels and environmental 

conditions be repeatable, systematic and quantitative. In recent years, physics-based fire behavior 

models such as HIGRAD/FIRETEC (Linn et al 2005) and WFDS (Mell et al 2009) have had an 

increasingly important role in improving our understanding of wildland fire, particularly with 

respect to how different aspects of wildland fuels affect fire behavior. The capability of these 

models to address fuel heterogeneity is critical to the potential success of the FASMEE project 

and other such efforts. However, despite the power of these models, they have not yet been 

widely used, largely due to the complexity required in developing inputs. The STANDFIRE 

prototype fuel and fire modeling platform (Parsons et al. 2017), developed with support from the 

JFSP (JFSP Project #12-1-03-30), is intended to ease this burden, providing a process by which 

fuels data can be used to rapidly develop 3D fuels inputs to physics-based fire models. Building 

upon previous work, Fuel3D (Parsons et al. 2011), STANDFIRE’s open source software, 

developed in python and Java, links fuels data in the Fire and Fuels Extension of the Forest 

Vegetation Simulator (FFE-FVS; Reinhardt and Crookston 2003) through a state-of-the-art fuel 

modeling system (Pimont et al 2016), producing fuels inputs for two independent physics-based 

fire models, WFDS and FIRETEC. In support of the FASMEE project, STANDFIRE was 

modified to provide a framework for linking traditional fuel measures to point cloud data at tree 

to stand scales. In the project reported on here, we use Airborne Laser Scanning (ALS) data with 

Terrestrial Laser Scanning (TLS) data and parametric plant models to link LiDAR metrics with 

fuel load data at multiple scales. We also derive the spatial variability of surface fuels across 

scales and parameterize STANDFIRE with ALS-derived models of individual trees. The work is 

described in two phases: surface fuel characterization, conducted in Southeastern US fuel beds, 

and canopy fuel parameterization, conducted in the Northern Rockies. Both aspects of this 

project contribute significantly to development of required data collection and analysis protocols 

for the FASMEE project. These efforts are parts of a larger framework for integrating 

measurements of fuels across scales to support fire modeling validation efforts (Figure 4).  

 

3.3 Case Study  

Existing datasets of fuel conditions similar to the settings described above were analyzed in a 

case study to improve our understanding of the novel point-cloud based fuel characterization 

methods that underpin the FASMEE fuels discipline. The 3D fuels portion of the case study 

progressed in five stages 1) fine-scale determination of surface fuels as determined from high 

resolution TLS for both grass/shrub and forested fuels in the SE; 2) refinement of surface fuel 

type and fuel load allocation based on highly realistic fuelbed simulations; 3) aggregation of TLS 

and ALS estimations of surface fuelbeds; 4) estimations of ALS-based canopy fuel loading and 

distributions; 5) integration of ALS canopy fuels in STANDFIRE and parameterization for 
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computational fluid dynamics fire behavior models. The remote sensing data sets used for these 

analyses were collected at Eglin Air Force Base (AFB), Florida, USA as part of the RxCADRE 

experiments and at Lubrecht Experimental Forest, Montana, USA as part of a LiDAR inventory 

of forest attributes. Field measurements of fuels were collected as part of RxCADRE in 2012, 

Strategic Environmental Research and Development Program (SERDP) in 2014, both at Eglin 

AFB. Forest inventory data were collected at Lubrecht Experimental Forest in western Montana 

in 2006. These existing datasets were analyzed as proxies given their similarity to those 

anticipated for collection at the proposed FASMEE sites. 

3.3.1 Case study site descriptions 

The surface fuels portion of the study focused on characterizing fuelbeds in the SE for both 

grass/shrub matrices and forested southern rough. Dominant species for the grass\shrub sites 

included multiple species of graminoids and shrubs as woody goldenrod (Chrysoma 

pauciflosculosa), lowbrush huckleberry (Gaylussacia dumosa), gopher apple (Licania 

michauxii), saw palmetto (Serenoa repens), persimmon (Diospyros virginiana), and hawthorne 

(Crataegus spp.) (Ottmar et al. 2016). Shrub species in the in the longleaf pine (Pinus pulastris) 

dominated overstory include turkey oak (Quercus laevis), sand post oak (Q. margaretta Ashe), 

blue jack oak (Q. incana Bartram), sand live oak (Q. germinate Small), and laurel oak (Q. 

laurifolia) (Hiers et al. 2007). 

 

The canopy fuels portion of the study focused on characterizing fuels canopy fuels at scale of 

individual trees in ponderosa pine (Pinus ponderosa) and Douglas-fir (Psuedotsuga menzesii) 

forests within the Lubrecht Experimental Forest’s Fire-Fire Surrogate Study. The 11,000 ha 

Figure 4.  Schematic of the the larger framework that airborne laser scanning, terrestrial laser 

scanning, and fuel simulations play in characterizing landscape fuels. 
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Lubrecht Experimental Forest is located approximately 54 km northeast of Missoula, Montana, 

USA (N 46º 53’ W 113º 27’). The siteis characterized dominated by open and moderately dense 

stands, a function of the intensive management strategies that occur on the forest. The stands 

utilized in this project are the Thin, Burn, Thin/Burn and Control treatments of the Fire-Fire 

Surrogate experiments.  

 

3.3.2 Field Measurements 

At Eglin AFB in Florida, validation data were collected as part of the RxCADRE experiments in 

the fall of 2012. Two modes of data were collected to represent small research prescribed fires (2 

ha) and large operational prescribed fires (>125 ha). The small research burns had 25 1x1 m 

sample plots dispersed at 10-m intervals around the edge of the each unit (n=125). The large 

operational burns had 20 x 20 m highly instrumented plots (HIPs) were distributed at 2.5-m 

intervals around the edge of the HIPs with nine 0.5 x 0.5 m sample plots in the grass\shrub units 

(n = 54) and twelve 0.5 x 0.5 m sample plots in the forested units (n = 36). Dry weight biomass 

samples were clipped from the plots and collected by four general categories: shrub, herbaceous 

(grass and forbs), down-and-dead fine wood (≤ 7.6cm in diameter), and litter (Ottmar et al. 

2016). Samples were oven-dried at 70°C in preparation for weighing and fuel load 

determination. 

 

In Montana, validation data for individual tree stem detection were conducted at sixty-one 0.04 

ha (0.10 acre) square plots using procedures outlined in the Fire Effects Monitoring and 

Inventory Protocol (FIREMON) tree sampling methods (http://frames.nbii.gov/projects/firemon/ 

TDv3_Methods.pdf; Table 1). Plots were located using a stratified random sampling design. A 

random point generator was used to place points in the project area, and these points were then 

stratified using a structural classification of height variance and percent canopy cover derived 

from the ALS-based Canopy Height Model (CHM; described below). At each plot, all trees >7 

cm Diameter at Breast Height (DBH) were measured for height, DBH, height to crown base 

(HTCB), and crown diameter. Trees less than seven cm DBH were counted by species 

(coniferous), ocular estimates of minimum, mean, and maximum height were made for each 

species class. Each tree was mapped using a laser range finder (Laser Tech Forest Pro) attached 

to a digital compass (Mapstar Compass Module II) on a range staff. Trees were mapped from 

fixed GPS (Timble Geoexplorer 2500) points around the plots and integrated into a GIS. A total 

of 1555 individual trees were mapped using this method. No thinning or fire occurred at the 

study plots between the laser altimetry acquisition and subsequent field campaign. All GPS 

points were differentially corrected when accuracy exceeded the real-time code carrier. The 

maximum position dilution of precision (PDOP) averaged 5.77 (standard deviation = 1.70) with 

the highest PDOP values occurring in dense overstory plots. Horizontal accuracy was 

approximately 50 cm, with the most accurate GPS points attaining an accuracy of 20 cm and the 

least accurate GPS points nearing 2 m accuracy in high density canopy conditions. 

 

3.3.3 Terrestrial Laser Scanning – Southeastern US 

For this case study analysis, TLS data were collected at Eglin AFB. The instrument used was the 

Optech Intelligent Laser Ranging and Imaging System (ILRISTM) 36D-HD TLS. This system 

uses a class I laser (1535 nm) wavelength), including a range of 3 to 1500 m with a 0.17-mrad 

divergence (17.6 mm spot spacing at 100m). This laser was employed to  test the efficacy of 

http://frames.nbii.gov/projects/firemon/%20TDv3_Methods.pdf
http://frames.nbii.gov/projects/firemon/%20TDv3_Methods.pdf
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characterizing unit fuels across multiple scales and toproduce models that predict fuels as a 

function of voxel determined occupied volume tied to in situ fuels measurements. 

 

Laser scans were completed pre-and post-burn using an Optech ILRIS
TM 

36D-HD instrument 

scanning at 10 kHz. As noted above, two modes of data were captured for the RxCadre project, 

including  1) six S-blocks representing relatively homogeneous and continuous grass fuels 

interspersed with shrubs over 100 x 200-m extents and 2) the 0.04 ha HIPs located within large 

operational prescribed fires and comprised of a range of fuel characteristics including 

homogenous grass, mixed grass shrub fuel, and longleaf pine southern rough fuel matrices. TLS 

sampling protocols for the HIPs plots were designed to capture overhead representations of fuel 

beds at ~8 mm spot spacing. The laser was mounted in an articulating boom lift and raised to a 

height of 20m above ground with a downward pointing tilt angle of 45°. The scanner was 

operated from the ground using a tablet computer with a WIFI connection. At full extension of 

the boom lift, the scan head was positioned nine meters horizontal from plot edge. A single scan 

captured the entire plot. For instances in forested HIPs, data were collected from 3-7 perspectives 

at variable heights to minimize occlusion of the fuel bed by tree boles and canopies.  

 

In the S-blocks, the TLS instrument was also positioned in the mobile boom lift at height of 20 m 

above the fuel bed. Laser scans were collected at six positions around each burn block 20 m 

horizontal from the edge of the block for each scan position. Post-fire scans were collected from 

the east and west positions only for a total of four per block. In each scan, the laser was pointed 

downward at an angle of 23°. Scanner settings were optimized to achieve consistent point 

density across the block with the caveat that point density necessarily declines as range 

increases. The ILRIS laser allows point density to be set as a function of focal distance; all S-

block scans were set to collect 2 cm spot spacing at 90 m. Time of flight scanners collect richer 

datasets near the point of origin of the scan with less dense point spacing as range increases. As 

the laser pulse moves away from the ILRIS instrument, the point spacing increases linearly with 

range at a rate of 16.8 mm per 100 m of range. Additionally, the illuminated footprint of the 

scanner increases linearly with range, becoming less sensitive to canopy gaps as spot size grows 

larger (Seielstad et al., 2011). Spot size in the foreground of each S-block was 16 mm, expanding 

to 29 mm at 100 m range.  

 

TLS data were processed from the raw data format using the ILRIS parser. These data were 

adjusted for side-lap incongruities between 40°x40° windows using Polyworks software 

(Innovmetric, Quebec, Canada). Once acceptable accuracy of scan swaths was achieved, scans 

from single scan points were merged into a single dataset. 
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3.3.4 Airborne Laser Scanning 

At Eglin AFB, discrete-return LiDAR data were collected on 3 November 2012 by Kucera 

International employing a Leica ALS60 instrument. A 1-m DTM was interpolated from the 

vendor-classified ground returns using the GridSurfaceCreate function of FUSION software 

(McGaughey 2014). The ‘minimum’ value was used rather than the default ‘mean’, such that the 

DTM took the value of the minimum elevation value in each grid cell. This lowers the DTM 

slightly so that the majority of near-ground returns will be above the DTM and hence have 

positive height values. The ClipData function of FUSION was used to clip, 200–300 points 

within a 3-m radius of clip plot center coordinates. The DTM was subtracted from the point 

cloud to normalize absolute point heights to relative heights above ground. Using the 

CloudMetrics function of FUSION, canopy height and density metrics were calculated from 

LiDAR returns 0–2 m above ground and within a 3-m radius of each pre-fire clip plot.  

 

Candidate metrics for predictive modelling included the mean, mode, standard deviation (s.d.), 

coefficient of variation (CV), skewness and kurtosis statistics calculated across the 0–2 m height 

range; as well as mean, mode, standard deviation and CV and proportion of all returns calculated 

within vertical strata of 0–0.05, 0.05–0.15, 0.15–0.50 and 0.50–1.0 m above ground. The stratum 

depths were intended to be unequal because the LiDAR returns are denser nearer the ground, 

where there is more vegetation and fuel to intercept the laser pulses, than higher above the 

ground. 

 

In Montana, Laser altimetry data were collected at nominal 1.5-m post spacing in June 2005 for 

the LEF using a Leica Geosystems ALS50 flown at 1900 m above mean terrain (AMT) with a 

35° scan angle (Horizons, Inc., Rapid City, South Dakota, USA). The acquisition was planned so 

that there was fifty percent side lap between all flight lines, effectively doubling native data 

density. Following acquisition, data were processed to correct for roll, pitch, and yaw using 

proprietary software developed by the vendor (Horizons, Inc.). Data were delivered in the 

American Society for Photogrammetry and Remote Sensing (ASPRS) developed LAS standard 

format for laser altimetry data (www.lasformat.org).  

 

Aboveground points were separated from the ground points using Terrascan (Terrasolid, 

Helsinki, Finland). Several iterations were used to refine the optimal settings that preserved 

important features (e.g. roads) and classified most aboveground points as canopy. As a result of 

the parameters used, it is worth noting that near-ground points that may have been low-lying 

vegetation were included in the ground classification in several areas; resulting in so called “les 

moutons” in the digital elevation model (DEM). These points were not added back to the CHM 

because they were sparsely distributed, less than one meter in height above ‘ground’, and there 

was no basis for determining their origin (e.g. rock, earth, and vegetation).  

 

http://www.lasformat.org/
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3.3.5 Surface Fuel Modeling – Southeastern US 

Voxels are three dimensional pixels that allow for volumetric representation of discontinuous 

surfaces using a regularly spaced three-dimensional grid (Stoker 2009). Each voxel point is 

enumerated with a single value from a data point describing discrete information for the location 

on the voxel array. A benefit of voxel analysis is the ability to depict areas of data presence or 

absence. Thus, in the domain of characterizing fuel beds, voxelization allows for the ability to 

examine fuel connectivity in three-dimensions, which is paramount to understanding where fuel 

elements exist and how they are distributed in space (Figure 5).  

For the purposes of this study, a 10 cm3 voxel resolution was selected based on three criteria: 1) 

that within the shrub grassland matrix 10cm3 voxel cells allow for characterization of both 

clusters of grass clumps (grass blades are typically ≤ 1cm in width) and larger shrub components 

(e.g. leaves and branches > 1cm in width); 2) This grain size preserves gaps between clusters of 

fuel elements, any larger (e.g. > decimeter) begins to fill gaps and generalize the fuel bed in ways 

that limit further analysis. Lastly; 3) Each individual scan is optimized to produce a 2 cm point 

spacing at 90m range, the combination of multiple scan angles produces a range of point 

densities from 2 points per cm2 to 8 points per cm2. Models developed for estimating fuels via 

TLS are reported at scales ranging from 0.25m2 and 1m2 due to field sampling scales. We use a 

Leave-One-Out-Cross-Validation (LOOCV) method to model the relationship between observed 

dry weight biomass and TLS occupied volume. To aggregate to coarser ALS scales, we 

aggregate the TLS derived fuel mass into 25 m2 cells representing the total mass for each pixel. 

 

3.3.6 Parametric Surface Fuelbed Simulations – Southeastern US 

We constructed spatially-explicit, highly-resolved, and realistic fuel beds using tools developed 

for 3D animation and modeling for the purpose of studying interactions between LiDAR point 

clouds and specific fuel attributes. Each fuel element/type (e.g. shrub, grass, needle, etc.) was 

discretized in the fuelbed, allowing for direct accounting of metrics such as height, volume, 

cover, surface area, density, and mass. We then examined the fuelbeds through comparison with 

in situ nadir imagery and field measurements, and explored the utility of these models as tools to 

better understand spatial variability in fuel properties and to improve remote sensing of fuel beds 

and fine-grained fire modeling. Finally, we compared simulated fuelbed height distributions with 

Figure 5. TLS-based 1cm voxel depictions of a grass dominated plot in the S-Blocks 

collected as part of the RxCADRE experiments. Red colors represent low density and 

yellow to white represent highest voxel densities. 
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TLS-derived height distributions to assess correspondence of the two methods as a preamble to 

future incorporation of LiDAR ray-tracing for simulating TLS. 

 

Our effort centered on a main objective of developing realistic and quantifiable simulated surface 

fuelbeds in longleaf pine ecosystems. We first generated fuel simulations from parametric plant 

models using high resolution nadir photo imagery (Figure 6) and detailed height measurements 

and parameterized them with biomass estimates for discrete fuel elements. We then transposed 

the models to an independent validation site and compared biomass estimates to actual dry 

weights. Finally, we derived and contrasted height distributions from the simulations and TLS 

data.  

 

 

3.3.7 Stem Detection Algorithm – Northern Rockies 

The fundamental framework of selecting a tree location is the utilization of a local maximum 

(LM) filter (Popescu and Wynne 2002) and the integration of a structural parameter (Rowell et 

al. 2006). The process utilizes neighborhood metrics of height variance and canopy point density 

within the neighborhood to adjust the expected crown widths of candidate trees. A search within 

that expected crown width identifies whether a higher point than the candidate point exists. If it 

does not, the candidate point represents a tree. Rowell et al. (2006) outline the combination of 

height variance and canopy cover for adjusting expected crown widths, where variance of height 

provides a metric related to the complexity of vertical structure, and percent canopy cover offers 

insight into the horizontal continuity of tree crowns which may influence expectations for crown 

1A 

1B 

Figure 6. Example of highly realistic fuelbed simulations that offer the ability to segment out fuel 

mass predictions by fuel type and bridge between field and TLS data. 1A) depicts the fuelbed 

simulation and 1B) is a nadir photo used to place plant, litter, and cone models. 
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size. The model uses these basic constructs as a way to determine the constriction and expansion 

of the expected crown diameter for predicting local maximums.  

 

The LM filter has been outlined extensively (Wulder et al. 2003; Popescu and Wynne 2004; and 

Rowell et al. 2006). The algorithm described in this study subsets the point data using Euclidean 

distance from a point of interest, then segments to a local area based on the estimated crown 

diameter of the point being evaluated. As mentioned previously, the logic of LM filtering is to 

search for points in the expected tree crown that may be higher than the point being observed. As 

all points carry a normalized height above ground in their attributes, a filter compares all other 

points in the local area and performs the height comparison. When a point of interest is higher all 

than surrounding canopy points, it is tagged as a tree. The search area is dynamic as it is based 

on the estimated crown diameter as a function of height and structural parameters. 

 

3.3.8 STANDFIRE Integration – Northern Rockies 

STANDFIRE is a prototype fuel and fire modelling system developed primarily for detailed 

analysis at stand scales of fuel treatment effectiveness (ADD JFSP PROJECT NUMBER). 

STANDFIRE is also well suited for evaluating other fuel changes, such as beetle kill, shrub 

encroachment or exotic annual grasses. The initial design of STANDFIRE was intended to 

enable users to get their local fuels data, typically in an FVS tree list, into the physics-based fire 

models. Because the overwhelming majority of fuels data used by most managers is not spatially 

explicit (i.e., stem-mapped stands), it was necessary to develop a process to generate 3D data. 

Thus, we built a data import process that leveraged the Stand Visualization System (SVS) files, 

used in FVS to display forest growth and management actions over time for a one acre area. This 

import process bypassed the lack of spatially explicit data for most users, and provided an 

intuitive link between the visualizations that users are accustomed to and fire simulations with 

the physics-based models. Importantly, it also facilitated simulations for larger areas such that 

the fire could develop outside of, and then burn into the SVS stand, used as a focal point for 

analysis (Figure 7).  
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Figure 7. Illustration of STANDFIRE, a prototype system for 3-D fuel and fire modeling at stand 

scales. STANDFIRE runs FVS and SVS (a), and appends biomass data for individual trees from FFE-

FVS to the tree coordinates in the SVS one-acre visualization (b), statistically extending that forest to a 

larger area specified by the user (c). These data are translated from 2-D to 3-D, populating voxels (3-D 

cells) with quantitative fuel properties for 3-D fire simulations (d).  
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IV. Results and Discussion 
4. Case Study Results 

4.1 TLS Characterization of Surface Fuel Loading – Southeastern US 

Estimates of occupied volume produced from the voxel analysis demonstrate strong relationships 

with total dry weighed biomass collected around the perimeters of the research and operational 

burn units. For the operational units, characterization of both forested and grass\shrub models 

explained 84% (Adj. R2 = 0.84) and 71% (Adj. R2 = 0.71) of the variability respectively (Figure 

8).  

Adj. R2=0.84 

RMSE= 48.89 g 

Adj. R2=0.71 

RMSE= 77.26 g 

Figure 8. LOOCV linear regressions for pre-fire fuels for the HIPs plots based on the relationship 

between TLS occupied volume and observed dry weight biomass. 
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Estimates of total fuel load in forested fuelbeds indicate a 19.5% error (RMSE = 48.89 g) and 

grass\shrub modeled estimates indicated a 29.7% error (RMSE = 77.26 g). In regards to the 

research burns (S-Blocks) overall model performance for all units combined explained 63% of 

the variability (Adj. R2 = 0.63; RMSE = 111.65 g). These units were characterized as grass\shrub 

matrices with individual block performance ranging from adjusted R2 of 0.63 to 0.87 (Figure 9). 

These results mark a successful first attempt at using TLS based volumetric analysis to predict 

total fuel loading across burn units. Others have been successful at predicting biomass at shrub 

scales using voxel analysis and estimated surface area in sage brush steppe and arctic species 

(Olsoy et al. 2014; Greaves et al. 2015). Our findings demonstrate the effectiveness of direct 

TLS measurements of occupied volume to predict surface fuels even when fuel density varies 

within the fuelbed as a factor of fuel type, with important implications for scaling fuel estimates 

in the FASMEE experiments.  

 

  

Adj. R2=0.63 

RMSE= 64.78 g 

Adj. R2=0.75 

RMSE= 48.68 g 

Adj. R2=0.82 

RMSE= 81.63 g 

Adj. R2=0.74 

RMSE= 118.68 g 

Adj. R2=0.87 

RMSE= 74.09 g 

Adj. R2=0.63 

RMSE= 111.65 g 

Figure 9. LOOCV linear regressions for pre-fire fuels for the S-Blocks based on the relationship 

between TLS occupied volume and observed dry weight biomass. 
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4.2 Linking TLS Fuels and ALS Surface Metrics – Southeastern US 

Pre-fire fuel loads for the combined 

grass\shrub and forested sites 

demonstrate that surface metrics from 

ALS are strong predictors of TLS-based 

total fuel load across the landscape (Adj. 

R2 = 0.71; RMSE = 0.008 Mg) (Figure 

10). TLS-based fuel load predictions (25 

m2) were non-normal as tested by the 

Shapiro-Wilk test (W = 0.9264, P 

<0.0001) and did not achieve normality 

using alternative transformations. 

Residuals from the model were normally 

distributed (W = 0.9939, P = 0.91). The 

range of fuel predictions encompassed 

similar ranges of observed TLS-based 

fuels. Bootstrap tests of equivalence 

rejected the null hypothesis of 

dissimilarity (P = 0.0025), which 

suggests that predictions and 

observations were similar with no bias 

or disproportionality (Robinson et al. 

2005). Of the nine potentially significant 

ALS surface metrics described in Hudak et al. (2016), only five were significant as predictors of 

TLS-based fuels. The approach of using aggregated TLS-based total fuel load also produced a 

landscape estimate for total fuel load per 25 m2 cell which is a distinguishable difference from 

the previous study that assumes a fuel average per hectare. We demonstrate improvements on 

utilizing ALS data surface metrics, as the model explains 27% more of the variability of the 

observed fuel loads then reported in Hudak et al. (2016).  

 

4.3 Tree Stem Detection – Northern Rockies 

The stem detection algorithm predicts overstory trees (R2 = 0.74) with an RMSE of 10.35 stems 

at densities up to 1500 stems per hectare). Stem density is generally under-estimated on plots 

with high stem counts, although only two plots had stem counts greater than sixty. Considering 

only plots with less than 1500 stems/ha (sixty stems per 0.10 acre plot), RMSE declines to 6.86 

and R2 increases to 0.78. Mean heights of ALS-estimated overstory trees are related to field 

height (R2 = 0.91; RMSE = 1.80 m). For intermediate stems, we observe a linear relationship 

between laser-predicted and field-observed stems (R2 = 0.40; RMSE = 8.28 stems). The percent 

error (PE) for intermediate stems (76.84%) is more telling of the variability associated with stem 

prediction for this canopy class than the RMSE. The results reflect the fact that intermediate 

stems at LEF are usually nested in the canopies of dominant trees or are clustered tightly within 

canopy gaps. The number of intermediate stems is more consistently under-estimated than over-

estimated and the magnitude of difference between observed and predicted is generally larger on 

plots where intermediate stems are under-estimated. Mean heights of intermediate stems indicate 

a strong relationship with observed mean heights (R2 = 0.83; RMSE = 4.55 m). Percent error is 

relatively small (13.12%) reflecting a tight range of heights for this canopy class. There is a 

Adj. R2=0.71 

RMSE= 0.008 Mg 

Figure 10. Multiple linear regression model predicting pre-

fire fuels using five ALS metrics from TLS biomass. 
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positive bias in predicting mean height of intermediate trees (mean bias = 0.23 m). Trees in the 

regeneration class were predicted with large error (R2 = 0.39; RMSE = 21.45 stems; PE = 

91.32%).  There does not appear to be a systematic under- or over-prediction trend. There is no 

obvious relationship between laser-based mean tree height and observed mean tree height for the 

regeneration crown class (R2 = 0.02; RMSE = 1.87 m).  

 

4.4 STANDFIRE – Northern Rockies 

As a prototype, STANDFIRE will continue to develop, adding new capabilities to facilitate new 

approaches or to incorporate new science as it becomes available. For FASMEE, we modified 

STANDFIRE to read in stem maps and associated topography built from ALS data, enabling 3D 

fuel modeling for real world sites. This is an important step for model evaluation projects such as 

FASMEE. The new process leverages the stem detection algorithm to produce ALS-based stems 

and associated tree attributes outside of STANDFIRE, including the stem location, tree height, 

height to crown base, and crown diameter. Tree diameters are modeled from tree crown 

dimensions. Because ALS data are generally not detailed enough in intensity values or data 

density to determine individual species for each tree, species are assigned within the process 

based on user-specified proportion of species occurrence.   

 

Within STANDFIRE, FVS uses allometric relationships based on tree DBH to predict bole and 

canopy biomass quantities. The LiDAR-driven data process in STANDFIRE relies on the SVS 

file to append biomass quantities to individual trees. As SVS is limited to 1 acre parcels, we 

developed the process to automatically tile the data into ~ 1 acre square sections. The process is 

coded in Python and takes advantage of the ArcGIS API, facilitating use of shapefiles as input 

data for stem mapped trees as well as several operations in which specific trees are associated 

with specific 1 acre areas. Figure 11 shows an overhead perspective of a representative six acre 

area, and Figure 12 displays the same data overlayed with color infrared imagery.  
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Figure 11. Overhead perspective of LiDAR derived stem map data, shown in ArcGIS. A fishnet of square 

1 acre areas (lines) divides the LiDAR derived stem map data into individual 1 acre areas for processing. 

Of these, six 1 acre areas, highlighted in green, were used to test the process. The stem mapped data 

represent a portion of the Lubrecht Experimental Forest Fire and Fire Surrogates field study.  
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Figure 12. Overhead perspective of subset area used to test STANDFIRE process for incorporation of 

LiDAR derived forest fuels data, shown as an overlay with high resolution color infrared (CIR) imagery. 

 

Within STANDFIRE, the process cycles through each one acre area, calculating canopy fuel 

load and associated bulk density for each tree. Canopy biomass is broken out into foliage and 

three size classes of branch wood, corresponding to fuel moisture time lag classes (e.g., 1 hour, 

10 hour and 100 hour). STANDFIRE additionally sets a series of other fuel parameters important 

to the physics-based fire behavior models, such as surface area to volume ratio, heat of 

combustion, ash content etc. STANDFIRE provides an interactive 3D interface for examining 

the data (Figure 13, overhead perspective and Figure 14, oblique perspective) as well as a 

number of additional capabilities for spatially explicit fuel treatments and other actions.  
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Figure 13. Overhead perspective of six acre area used to test the STANDFIRE LiDAR derived forest 

fuels process, shown in the STANDFIRE 3D viewer. 

 

 
Figure 14. Oblique perspective of six acre area used to test STANDFIRE LiDAR derived fuels process, 

shown in the interactive STANDFIRE 3D viewer. 

After fuels are modeled, they are exported to file formats appropriate for input to physics-based 

fire models. A key strength of STANDFIRE is that the exact same fuels inputs can be developed 

for both WFDS and FIRETEC, providing an unprecedented opportunity for model evaluation 

through direct comparison. In the future, other fire behavior model input formats will likely be 

developed as well in STANDFIRE.  
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4.5 Case Study Implications for FASMEE  
The preceding set of case study results exemplify novel methods that build upon previous 

research (e.g., Skowronski et al. 2011, Gobakken et al. 2015) for fuel characterization based 

largely on point cloud data, which has important implications for FASMEE because fuels are key 

measures that inform all FASMEE disciplines. Fuel consumption is the primary driver of fire 

behavior at fine scales but also influences plume dynamics and the spatiotemporal variation in 

near-source smoke production at coarser scales (Parsons et al. 2011). The rate of fuel 

consumption determines heat release and other aspects of fire behavior, plume dynamics, and 

source characterization for the gaseous and particulate composition of smoke emissions. 

Therefore, the spatial configuration of fuel combustion and how combustion changes from the 

flaming front passage to residual smoldering is critical for the evaluation of many fire behavior 

and smoke production and dispersion models. 

 

The FASMEE Phase I Fuel and Consumption discipline team recommended four main subtasks 

for observations, organized by measurement platform in Figure 15. 

1) Ground-based 

2) Tower or tethered balloon 

3) Unmanned Aircraft Systems (UAS) 

4) Airborne 

4.6 Sampling Design (multi-scaled pre- and post-fire fuels mapping framework) 

To spatially characterize pre- and post-fire fuel mass, volume, and bulk density as three-

dimensional grids, a multi-scale fuel measurement and modeling framework is proposed. 

Remotely sensed point cloud data will be integrated with traditional field sampling methods 

(Figure 16). The density and extent of the point cloud and ground-based measurements are 

contingent on fuel type and structure. In general, sites with fine surface fuel beds that vary at 

sub-meter scales (common in southeastern US sites) can be characterized at high resolution (≤ 1 

m), whereas sites with fuel elements that vary at the scale of individual trees, which commonly 

occurs in the western US mixed conifer sites, can be characterized at coarser resolution (≥ 1 m). 

Across all FASMEE sites, overstory tree crown structure should be mapped using airborne 

LiDAR immediately pre- and post-fire.  

 

In particular, FASMEE requires high-resolution maps of fuel consumption and that the spatial 

configuration of pre- and post-fire fuels is coordinated with spatial and temporal characterization 

of fire progression, energy flux and smoke production. The rate of fuel consumption per area 

relates more directly to combustion than fuel load, and consumption by combustion phase varies 

greatly by fuel component. Thus, 3D maps of fuel consumption by component will provide more 

direct relationships to energy flux and emissions than maps of fuel loads and type.  

 

Characterizing the type of fuels and spatial position of fuels relative to fireline progression will 

identify the sources of flaming and smoldering consumption. For example, coarse wood and duff 

on site would be expected to contribute most to short- and long-term smoldering. Coupled 

infrared measurements with mapped fuels will be used to coordinate fire behavior observations 

with mapped pre- and post-fire fuels. A less desirable but useful alternative are gridded maps of 
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Figure 16. Schematic of 10 m x 10 m highly instrumented plots (HIPs) interspersed by destructive sampling 

areas to characterize fuel and consumption in southeastern surface fuel beds. Pre- and post-fire clip plots are 

paired and within destructive sampling areas to avoid trampling in or around the HIPs.  

fuel loading and type linked to models such as CONSUME (Prichard et al. 2005) or FOFEM 

(Lutes et al. 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Hierarchical sampling scales of fuels, from ground to airborne measurements. 
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4.7 Justification of sampling methods  

 

At the scale of FASMEE experimental burns, fuel consumption must be inferred by comparing 

pre- and post-burn fuel loads, as proposed for every fuel component in Table 1. To estimate fuel 

consumption in a spatially explicit manner requires that pre- and post-burn fuels measurements 

be collected non-destructively. This approach has been demonstrated as feasible in the New 

Jersey pine barrens burned with prescribed crown fires (Mueller et al. 2016), where the overstory 

forest canopy was characterized with pre- and post-fire ALS , and at a finer scale with TLS of 

forest understory vegetation burned with prescribed surface fires in a longleaf pine ecosystem 

(Rowell et al. 2016). Fuel measurements at both crown and surface fires are therefore included 

among the suite of fuels measurements detailed in Table 1.  

 

These point cloud datasets collected via active remote sensing should be augmented with (1) 

complementary point cloud measurements, (2) stereo photogrammetric points collected with 

digital cameras mounted on UAS, to bridge the scaling gap between ALS and TLS scales, and 

(3) close-range stereo photogrammetry (Bright et al. 2016), to characterize destructive sample 

plots of ground cover and debris prior to harvesting. The classification and mapping of fuel type 

cannot be adequately estimated using point-cloud based techniques alone. Therefore, multi- (or 

hyper-) spectral image data collections, across the same nested, multi-scale framework as the 

point cloud data collections are desirable. The digital, passive optical imagery from which 

photogrammetric point clouds are derived, collected hierarchically using airborne, UAS, ground-

based or handheld systems (e.g., Faro Freestyle), may suffice for this purpose. 

 

The spatial structure of fuel beds and distribution of fuel components are so inherently complex 

(Keane et al. 2012; Keane and Gray 2013; Hiers et al. 2009; Loudermilk et al. 2009) that 

spatially explicit measurements must be relied on to characterize them (Table 1). 

Complementary destructive sampling is needed to predict mass of fuel loads or consumption 

from metrics derived from the various point cloud datasets. Destructive sampling is also needed 

to estimate those fuel components that are not amenable to point cloud characterization because 

of limited visibility, but that all contribute differently to emissions (e.g., litter, duff, and fine 

woody debris fractions).  

 

Fuel consumption estimates ideally need to meet the fine-scale resolution requirements of the 

physically based fire behavior models. Fuel consumption estimates are also needed for smoke 

models, but these can be at coarser resolutions. As such, fuel consumption estimates may be 

aggregated to coarser resolutions to improve the accuracy of the smoke models, along with 

measures of spatial variability. Newer, less intensive techniques to more quickly estimate fuel 

load components, such as the photoload method (Keane and Dickinson 2007), may relate poorly 

to destructive fuel sampling methods (Volkova et al. 2016); these need to be tested in a rigorous 

sampling framework. However, the photoload method may suffice for informing smoke models 

because of the coarser-scale input requirements. 

 

To estimate fuel moisture dynamics by fuel type across the burn units, repeated and synoptic 

thermal infrared or microwave measurements sensitive to dynamic fuel moistures are needed, 

together with contemporaneous fuel moisture samples collected on the ground and integrated 
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into the models. Such data should be collected not just immediately before the prescribed fires, 

but perhaps also for a week or more preceding the fires, along with meteorological observations 

to capture fuel moisture dynamics at hourly to monthly time scales. 

 

4.7.1 Ground-based measurements 

 

Table 1: Observational specifications for the ground-based sampling. 

Instrument / 

Technique 

Spatiotemporal 

scales 

Observation Additional 

Specifications and 

derived parameters 

Photoload plot 

(non-destructive) 

1 m2 micro-plot 

30 per burn unit 

20 per HIP 

Pre- and post-fire 

herbaceous, low shrub, 

downed wood by size 

class (1-hr in 0-2mm, 

2-4mm, 4-6mm, 10-hr 

and 100-hr) in kg/m2 

Located at pre- and post-

burn clip plot locations, 

and excluding other plots 

at the HIPs 

Photoload plot 

(non-destructive) 

0.02-ha 

4 per fuel 

condition 

4 per HIP 

Pre- and post-fire 

≥1000-hr downed 

wood in kg/m2 

Fuel condition sampled by 

stratified systematic 

design. 

Wire log method 

for coarse wood 

consumption 

(non-destructive) 

0.02-ha 

10m transects 

Coupled pre- and post- 

measures to estimate 

≥1000-hr downed 

wood consumption by 

decay class (sound and 

rotten) 

Large logs and stumps 

randomly selected within 

inventory plots at HIPs 

Forest inventory 

plot and subplots, 

transects 

(non-destructive) 

0.02-ha 

0.01-ha 

1 m2 micro-plots 

Pre- and post-fire 

forest inventory plot 

measures, including 

trees (live and dead), 

saplings, shrubs, 

herbaceous, 1000-hr, 

100-hr, 10-hr, 1-hr, 

0.1-hr, litter and duff 

Canopy, crown, and 

surface fuel load 

component bulk densities 

(kg/m3) 

Compare to and validate 

with complimentary 

destructive measurements 

Pre- and post-burn 

clip plots to 

estimate fuel load 

(destructive) 

1 m2 

30 per burn unit 

20 per HIP 

 

Pre- and post-burn 

biomass and bulk 

density (kg/m3) by fuel 

type and size class 

Physical fuel 

properties by fuel 

type, category and 

status (live/dead) 

Surface area/volume 

ratio 

Bulk density in kg/m3, 

packing ratio 

Fuel types include shrubs, 

grasses, fine wood by size 

class, coarse wood (sound 

and rotten), litter, and duff 

Validate corresponding 

non-destructive 

measurements. Burn unit 

plots located with 

stratified systematic 

sampling, excluding other 

plots at the HIPs 
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Fuel moisture Day-of-burn grab 

samples of fuel 

components 

Gravimetric water 

content (%) of fuel 

components 

Fuel types include shrubs, 

grasses, fine wood by size 

class, coarse wood (sound 

and rotten), litter, and duff 
 

4.7.2 Tower or tethered balloon measurements 

 

Table 2: Observational specifications for mid-scale tower or tethered balloon sampling 

Instrument / 

Technique 

Spatiotemporal 

scales 

Observation Additional 

Specifications and 

derived parameters 

Photogrammetry Across HIP 

0-5 to 2m 

resolution 

Photogrammetric 

point clouds, pre- and 

post-fire 

Intermediate scale 3D 

canopy and surface fuel 

mapping 

Fuel load, type and status 

(L,D) 

TLS (terrestrial 

laser scanner) 

1-100cm 

resolution 

LiDAR point clouds, 

pre- and post-fire 

Fine-scale 3-D canopy 

crown, ladder and surface 

fuel mapping 

Shrub and herb bulk 

density 

Photogrammetry 1-10cm resolution Surface fuel density 

Fuel type and status 

Pre- and post-fire 

Co-located with ground-

based fuel sampling 

microplots 

 

4.7.3 UAS measurements 

 

Table 3: Observational specifications for mid-scale UAS sampling 

Instrument / 

Technique 

Spatiotemporal 

scales 

Observation Additional 

Specifications and 

derived parameters 

Structure-from-

motion 

photogrammetry 

Across HIP 

0-5 to 2m 

resolution 

Photogrammetric 

point clouds, pre- and 

post-fire 

Intermediate scale 3D 

canopy and surface fuel 

mapping 

Fuel type and status (L,D) 
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4.7.4 Airborne measurements 

 

Table 4: Observational specifications for airborne sampling. 

Instrument / 

Technique 

Spatiotemporal 

scales 

Observation Additional 

Specifications and 

derived parameters 

ALS (airborne laser 

scanner) 

Across burn unit, 

3-5m resolution 

≥8 /m2 point 

density, pre- and 

post-fire 

LiDAR point cloud 

characterization of 

fuel load, pre- and 

post-fire 

Synoptic 3D canopy and 

crown fuel mapping 

including CBD as 

calibrated by ground 

measures 

Multi-spectral (MS) 

imagery 

Across burn unit, 

1-5m resolution, 

pre- and post-fire 

High resolution, MS 

characterization of 

fuel type pre- and 

post-fire 

Synoptic, overhead 

imagery of canopy, 

crown, and surface fuel 

types as calibrated by 

ground measures 

Thermal IR or 

microwave imagery 

Across burn unit, 

pre-fire and in 

concert with 

background 

meteorological 

measurements 

Synoptic measures of 

fuel moisture 

dynamics in relation to 

weather data over a 

representative period 

immediately preceding 

the fire 

Coarser scale synoptic 

satellite observations also 

relevant; vegetation fuel 

moisture dynamics as 

calibrated by ground 

measures 
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V. Conclusions  
 

The optimal configuration between ground-based, UAV, and airborne data collection systems 

varies substantially by site. Only by applying a strategic sampling scheme can some important 

fuel components (e.g., litter, duff, and woody debris) be reliably estimated at the unit level. 

Remotely sensed point-cloud data from airborne LiDAR or photogrammetry are, at best, only 

weakly sensitive to surface fuels such as litter, duff and downed wood. Smaller-scale sampling 

using terrestrial LiDAR or hand-held scanners are in research and development stages and in the 

future may allow for non-destructive sampling of these fuel components. Until that time, 

estimation of surface fuel components will necessarily rely on traditional field sampling methods 

including a combination of destructive and non-destructive sampling methods. Characterizing all 

fuel components that can consume is critical for emissions source characterization and in 

particular, can enable partitioning combustion into flaming, short-term smoldering and residual 

smoldering phases. 

 

In a spatial context, it is important to oversample variation in fuel pattern relative to the spatial 

scale of fire behavior and effects. Upon aggregation of fine-scale fuel measures, relative regions 

of homogeneity (i.e., patches) emerge. For example, if a 3D, gridded fuels input layer to a 

physics-based fire model such as FIRETEC or WFDS captures strong gradients in fuel loads 

related to patchiness, then we could expect the fire intensity predicted by the model to display a 

similar spatial structure. If not, we would know the model isn’t representing reality. In contrast, 

fuel maps that are truly homogeneous would result in predicted fire behavior that also appears 

homogeneous upon averaging multiple simulations.  

 

Because fire and smoke modeling is intrinsically tied to accurate characterization of fuels and 

fire dynamics, we need consistent and co-located measures for model evaluation and 

development. To date, few comprehensive datasets exist that include spatially explicit fuel 

characterization, fire-atmosphere interactions to smoke dispersion and chemistry. We anticipate 

that in the short term, fuel and consumption datasets will be used to evaluate operational and 

next-generation fire and smoke models. The substantial investment in spatially and temporally 

integrated measurements of fuels, consumption, fire behavior, plume dynamics and smoke 

chemistry are being made to provide evaluation datasets for next-generation models. Over the 

next decade, these coordinated measurements will be used to not only develop and improve 

computationally intensive models such as coupled-fire atmosphere dynamics models but also 

result in improvements to operational models. For example, the Interagency Fuel Treatment 

Decision Support System (JFSP 2009) was originally developed to provide an integrated, web-

based system for fuel treatment planning that employed common operational fire and fuel 

consumption models. Recently, STANDFIRE (Parsons et al. 2016), was developed as a module 

within IFT-DSS to support creation of 3D fuels from tree list data developed within the Forest 

Vegetation Simulator and run FIRETEC and WFDS to evaluate consequences of forest thinning 

and fuel reduction treatments on predicted fire behavior. Both programs – IFTDSS and the 

STANDFIRE module-- are still under development and could benefit from FASMEE evaluation 

datasets. 

 

VI. Relationship to Other Findings and Ongoing Work (1-2 pages) 

6.1 Surface Fuels - Southeast 
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Three-dimensional fuels characterization using TLS-based fuels products is an integral part of 

describing fuels explicitly and accurately. Descriptions of fine-scale fuelbeds as fuel load and 

specifically partitioned to fuel type allow for CFD to assess differential rates combustion per fuel 

type and coupled with fuel moisture and ambient temperature. Fuelbed products derived from 

TLS provide detailed spatial data that include fuel mass, height, and occupied volume. Yet, these 

data are difficult to segment into discrete fuel types that are critical for determining how fire will 

advance over a landscape. The integration of simulated fuelbeds begins to describe how fuel 

types are distributed at incredibly fine scales, as well as account for fuel mass not seen by the 

laser. The combination of these two techniques provides a logic to discretize mass by fuel type 

that has implications in regards to fire behavior, smoke production, and fire effects. Additionally, 

these estimates of fuel mass are systematic and when linked to ALS surface metrics, can be 

easily extrapolated over a landscape. Modeled estimates fuel mass using ALS metrics and TLS 

fuel mass are represented as a total fuel load for a 25 m2, which ultimately represents variability 

across the fuelbed that is of value to CFD models as an input. The RxCADRE experimented 

highlighted the need for more robust data that characterized the measured distributions of fuel 

mass and type three-dimensionally. Specifically, Rowell et al. (2016) identified the complexity 

of relating TLS and field-based fuelbed heights, specifically mean heights. We see opportunities 

for improving field data to be collected in ways that support better three dimensional comparison 

with TLS data. The multi-scale nature of TLS and ALS data products are also well aligned for 

use in CFD models. Aggregated products to coarse scale (5m x 5m pixels) are optimal for 

landscape modeling in FIRETEC and TLS fuel characterizations (<1 m) also may be used for 

sub-grid modeling in both WFDS and FIRETEC.  

 

6.2 Canopy Fuels – Northwest 

Segmentation of ALS point clouds into discrete stems that can be ported into useable inputs for 

CFD models is critical to realistically distributing canopy fuels. The results presented 

demonstrate that rational estimations of individual trees representing multiple strata of forested 

systems can be produced. Integration into STANDFIRE via FFE-FVS provides a spatially 

explicit and detailed distributions of canopy fuels allocated by type and mass. STANDFIRE 

provides a number of approaches for analyzing fuels as well as the critical capability of 

simulating fire in two independent physics-based fire models. The capability developed in this 

project of providing a systematic approach for building 3D fuels inputs for physics models based 

on LiDAR and other fuel sampling efforts is a very important step toward model evaluation 

efforts. This work may also potentially lead to improved sampling strategies both for fuels and 

for fire behavior observations. 

 

6.3 STANDFIRE for Modeling Hierarchical Fuels 

STANDFIRE provides a broad suite of approaches for modeling wildland fuels. A number of 

these approaches are demonstrated in a recent paper (Pimont et al 2016), which describes 

FuelManager, a system developed for European fuels. Both systems are modules in, and build 

upon, the common architecture of the CAPSIS (Computed Aided Projection of Strategies in 

Silviculture) platform (http://www.inra.fr/capsis; Dufour-Kowalski et al. 2012). This is an 

integrated modeling framework for forestry research enables fuels data from various sources to 

be used as inputs to physics-based fire models. More information on CAPSIS is available at 

http://capsis.cirad.fr/capsis/home.The STANDFIRE and FuelManager modules rely on the Fire 

library, which enables simulation of fuel treatments and calculation of fire effects. More 

http://www.inra.fr/capsis
http://capsis.cirad.fr/capsis/home
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information about the Fire library is available at http://capsis.cirad.fr/capsis/help_en/firelib. In 

brief, the Fire library is a computer code library which represents wildland fuels as spatially-

explicit 3D objects. Different kinds of vegetation are represented either as Plants (with specific 

coordinates and dimensions, typically used for trees or large shrubs) or as collections of plants 

called LayerSets. The Plants and LayerSets can include multiple types of particles, finer scale 

fuel elements, such as leaves, needles and twigs of various sizes, either live or dead, and 

characterized by their mass to volume ratio, surface area to volume ratio and moisture content. 

This modeling architecture provides a flexible and powerful way to realistically incorporate 

canopy and surface fuels measured or mapped with various approaches in the context of 

FASMEE or other similar projects.  

 

6.4 Management Implications 

In many fire-prone ecosystems, combined impacts of climate change, fire exclusion, and rapid 

development of the wildland urban interface create complex management issues for fuel and fire 

managers. Managers increasingly need more accurate and precise fuels maps to prioritize fuel 

reduction treatments and ecosystem restoration. Fuel maps created from both traditional and 3D 

point cloud datasets will constitute the next generation of planning products for managers that 

this research will bring closer to operational utility, to be applied towards, for example, planning 

fuel breaks or fire interactions in the wildland-urban interface.  

 

The proliferation of ALS data sets across the United States means that managers should  

expect improved fuel estimates and spatial data products. The techniques outlined for FASMEE 

phase 1 will greatly improve fuel characterization and ultimately capture more variability on the 

landscape that affect decision making in forest planning, fuels management, and fire 

management. The ability to map and assign discrete mass to individual trees also allows for 

managers to better relate structural components of forests that support theories as the ecology of 

fuels (Mitchel et al. 2009), where dominant pine stands produce fuel continuity that affect 

understory plant diversity and hardwood regeneration in the SE. 

 

Although FASMEE fire and fuel consumption observations will be first used in model 

evaluation and development, the public will ultimately benefit from this research. To address the 

complexity of future wildland fire management issues, we need an improved understanding of 

fuel-fire relationships. As we are armed with more accurate and precise fuel maps and fire and 

weather models, we can better forecast fire intensities and fire behavior dynamics that threaten 

or endanger people, their property, and the natural resources that land managers are charged to 

protect.  

 

 

VII. Future work needed (1-2 pages) 
The research described in this report is fundamental to FASMEE, but all of the pieces of the 

concept diagram at the start of the report have not been unified for an operational burn support. 

Given the availability of the RxCADRE datasets, greater focus thus far has been in the SE, but 

we also investigated canopy/crown fuels representative of western conifer systems.  

 

http://capsis.cirad.fr/capsis/help_en/firelib
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In the domain of fine-scale 

fuels characterization, we 

have begun testing other 

methods of data collection 

that compliment and expand 

our ability to characterize 

increasingly larger areas in a 

landscape. We have begun to 

use UAS (Figure 17) to 

produce point clouds from 

structure for motion and 

employ hand-held laser 

scanners that are mobile and 

less expensive than 

traditional TLS systems. We 

have conducted field 

experiments in the SE where 

all modes of data are 

collected to begin building 

models that link fuel 

classification and mass 

predictions. We also 

leveraged other projects to 

test new technology and sites. 

We used a RIEGL VZ-2000 

laser scanner, which has a 

maximum sampling rate of 

1000 kHz and range of up to 

kilometer. We tested this 

laser in spruce\fir systems of 

the north rim of the Grand 

Canyon as a proxy for the 

Fish Lake FASMEE site. 

 

Figure 17. Valentijn Hoff piloting a quadcopter UAS. 
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We have also utilized lessons learned from 

previous campaigns to create a new 3-D 

fuel sampling method (Figure 18). This 

method collects fuels data as a volume 

characterizing fuels by height strata and 

fuel type per 10 x 10 cm voxel cells. We 

also collect biomass by 10 cm strata and 

randomly subsample by 10 x 10cm 

individual cells to ascertain biomass 

distributions by strata and variability 

within strata. We believe this method of 

fuels collection will better support analysis 

of TLS point clouds and voxel products.  

 

Additional work in forested systems is 

needed where surface fuel beds are often 

obscured by canopy. This study found that 

simulations using established allometries 

to produce simulated forests found that 

canopy height is not a significant predictor 

of biomass, but modeling forest profiles 

that estimate plant area fractions improved 

LiDAR-derived estimates of forest 

biomass.  

 

The ability to produce realistic simulated 

laser point clouds is a significant proving 

mechanism for understanding how 

terrestrial laser scanners characterize fine 

fuels. Previous attempts at describing these 

fuels have been difficult due to occlusion 

and point sampling variability using 

terrestrial laser scanner data collected 

obliquely from a boom lift (Rowell et al. 

2016). Further work needs to be conducted 

to determine how well biomass estimated 

from the simulated fuelbed performs specifically integrating more intensely sampled fuelbeds. 

Automation of fuelbed construction is also imperative to reducing variability and subjectivity. 

We also foresee benefits for the integration of these findings with other high resolution 

simulation techniques, such as FUEL3D (Parsons et al. 2011), where we may begin to combine 

surface and canopy fuels for improved inputs used for physics-based fire behavior models. 

 

  

Figure 18. Louise Loudermilk and Christie Hawley 

destructively sampling 3D fuels in 10 cm voxels. 
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VIII. Deliverables crosswalk (and additional deliverables) 
 

Table 5: Project deliverables  

Deliverable Description Date 

Project kick-off meeting Participated in a 2-day planning retreat, 

Seattle 

April 2016 

SE reconnaissance field 

work 

Participated in a field tour of the SRS 

and Ft Stewart 

May 2016 

SW reconnaissance field 

work 

Participated in a field tour of the 

Fishlake and Kaibab/N Rim study sites 

July 2016 

SW preliminary field 

sampling 

Conducted traditional fuel sampling at 

the Fish Lake site, and at Kaibab/N Rim 

from newly collected TLS and existing 

ALS data 

Oct 2016 

Observational study design Contributed to the FASMEE Study Plan, 

the main deliverable of Phase I. 

March 2017 

SE TLS-based surface fuel 

modeling 

Predicted surface pre- and post-fire fuel 

loads and estimated surface fuel 

consumption from TLS metrics, using 

RxCADRE datasets as a case study 

May 2017 

SE TLS-ALS integration Upscaled TLS-based fuel predictions to 

burn unit level from ALS metrics, using 

RxCADRE datasets as a case study 

May 2017 

SW ALS-based canopy fuel 

modeling 

3D fuel modeling of canopy/crown fuels 

with STANDFIRE 

May 2017 

FASMEE Background 

Paper 

Review paper on background research 

that informed FASMEE and future 

research needs. Susan Prichard, co-lead, 

is lead author. 

In preparation 

JFSP Final Report Final report (this document) June 2017 
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406-329-4846 

 

Louise Loudermilk (fuel sampling and modeling) Southern Research Station, Athens, GA. 

elloudermilk@fs.fed.us 

707-559-4309 

 

Russ Parsons (Fuels3D, Standfire), Missoula Forest Sciences Laboratory, Rocky Mountain 

Research Station, Missoula, MT. 

rparsons@fs.fed.us 

406-329-4872 

 

Carl Seielstad, Eric Rowell (TLS, fuel modeling), National Center for Landscape Fire Analysis, 

University of Montana, Missoula, MT. 

 

Nick Skowronski (SERDP liaison, lidar, remote sensing), Northern Research Station, 

Morgantown, West Virginia. 
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