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Introduction

The projected rapid changes in climate will affect the
unique vegetation assemblages of the Northern Rockies
region in myriad ways, both directly through shifts in veg-
etation growth, mortality, and regeneration, and indirectly
through changes in disturbance regimes and interactions
with changes in other ecosystem processes, such as hydrol-
ogy, snow dynamics, and exotic invasions (Bonan 2008;
Hansen and Phillips 2015; Hansen et al. 2001; Notaro et
al. 2007). These impacts, taken collectively, could change
the way vegetation is managed by public land agencies in
this area. Some species may be in danger of rapid decreases
in abundance, while others may undergo range expansion
(Landhéusser et al. 2010). New vegetation communities
may form, while historical vegetation complexes may

Figure 6.1—The Northern
Rockies (NR) assessment
area that includes the
Northern Region of the
U.S. Forest Service and the
Greater Yellowstone Area
(Yellowstone National Park
and surrounding areas).
Presented are existing
vegetation types by the five
geographic sub-areas used
to stratify assessments in this
report. This map was created
from the LANDFIRE Existing
Vegetation Type map by
aggregating the National
Vegetation Classification
Standard vegetation types
into a set of vegetation types
that has some meaning
across the NR at this coarse
scale. This map is intended
to convey current vegetation
of the NR.
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simply shift to other areas of the landscape or become

rare. Juxtaposed with climate change concerns are the
consequences of other land management policies and past
activities, such as fire exclusion, fuels treatments, and graz-
ing. A thorough assessment of the responses of vegetation
to projected climate change is needed, along with an evalua-
tion of the vulnerability of important species, communities,
and vegetation-related resources that may be influenced by
the effects, both direct and indirect, of climate change. This
assessment must also account for past management actions
and current vegetation conditions and their interactions with
future climates.

This chapter addresses the potential impacts of climate
change on forest vegetation in the Forest Service, U.S.
Department of Agriculture (USFS) Northern Region and
the Greater Yellowstone Area (GYA), hereafter called the
Northern Rockies region (fig. 6.1). Then, based on the
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climate impacts assessment, we present an evaluation of the
vulnerability of important tree species, vegetation types,
and resources of concern to projected climate change ef-
fects. Last, we present various adaptation actions to address
climate change vulnerabilities.

This chapter has six major sections. In the introductory
section, we define terminology used throughout the chapter
and provide background material on the details of the
assessment including the scales, geographic areas, and perti-
nent information used to make our assessments. We discuss
how to evaluate uncertainty in climate change projections
and vegetation response. We also summarize the methods
used to make projections of vegetation response to changing
climate. The second section contains important ecological
background information that was used to assess climate
change impacts and projected climate change responses for
17 tree species, 5 forest vegetation types, and 3 resources of
concern. The third section presents information on the tree
species, types, or resources of concern that are important
when evaluating climate change responses. In the fourth
section, we rate the vulnerability of the species, vegetation
types, and resources of concern to climate change using
information from the third section. In the fifth section, we
discuss adaptation strategies and management actions that
can be used to address likely impacts of climate change. The
final section is a concluding discussion.

This chapter uses the best available information about
climate change effects on vegetation in the Northern
Rockies. We have integrated broad-scale modeling results
with a detailed synthesis of climate change literature for the
region. This chapter was written to aid land managers in ad-
dressing climate change effects on forest vegetation in land
management planning and development of management
strategies. This chapter does not include the detail needed
to address climate change effects at the project level, but it
does include valuable information and syntheses that can be
used in project planning and in addressing broad concerns at
large spatial scales.

Terminology

Climate

Evaluations of climatic trends can be confusing, mostly
because weather and climate vary at different spatial
and temporal scales. To reduce this confusion, it is often
helpful to clearly define the terms and explain the scales
that distinguish weather, climate variability, and climate
change. Weather is the hourly, daily, weekly, or monthly
summaries in temperature, precipitation, wind, humidity,
and other atmospheric conditions observed at a given place
or across a large region. Weather changes at relatively small
temporal scales (quickly) and it can change significantly
as one moves north or south, east or west, or up and down
in elevation. Weather is difficult to predict more than a
few days in advance. Climate is a statistical characteriza-
tion of the weather, averaged over many years. The World
Meteorological Organization defines it as the average
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30-year weather patterns of a region. Climate variability

is the variation in weather statistics over relatively broad
regions and long time periods. Climate variability can be
caused by underlying climatic processes, such as changes

in patterns of ocean temperatures. The El Nifio-Southern
Oscillation (ENSO) and the Pacific Decadal Oscillation
(PDO), for example, are two sources of climate variability
in western North America (Newman et al. 2003). ENSO
oscillations occur over 2- to 7-year periods (Gershunov and
Barnett 1998), while PDO oscillations occur on a longer cy-
cle (20-50 years) (Heyerdahl et al. 2002). External forcings,
such as changes in solar radiation, large volcanic eruptions,
and increasing concentrations of greenhouse gases in the at-
mosphere, also influence climate variability. Climate change
is a nonrandom change in climate that is measured over
several decades or longer. It is technically defined as a sta-
tistically significant variation in either the mean state of the
climate or in its variability, persisting for an extended period
(decades or longer). Like climate variability, climate change
may be due to natural internal processes or to external forc-
ings. A climate scenario is a plausible and often simplified
representation of one possible future climate, based on a
consistent set of known principles about the climate system
used as input to climate models.

Vegetation

Several general terms are used in vegetation ecology
to describe how ecosystems respond to climate change
(Intergovernmental Panel on Climate Change [IPCC] 2007).
Adaptive capacity is the ability of a plant, species, or system
to adjust to climate change (including climate variability
and extremes) to moderate potential damages, to take ad-
vantage of opportunities, or to cope with the consequences.
Exposure is the nature and degree to which a system is
exposed to significant climate variations (Glick et al. 2010).
Sensitivity is the degree to which a system is affected, either
adversely or beneficially, by climate variability or change.
The effect may be direct, such as crop yield decreases in re-
sponse to a higher temperature, or indirect, such as damage
caused by an increase in the frequency of coastal flooding
due to sea-level rise. Resilience is the degree to which eco-
systems can recover from one or more disturbances without
a major shift in composition or function, whereas resistance
is the ability of an organism, population, community, or eco-
system to withstand perturbations without significant loss
of structure or function (i.e., remain unchanged) (Holling
1973; Seidl et al. 2016). From a management perspective,
resistance includes (1) the degree to which communities are
able to resist change, such as that from warming climates,
and (2) the manipulation of the physical environment to
counteract and resist physical and biological change (i.c.,
cutting, burning, harvest treatments). Vulnerability is the
degree to which a system is susceptible to, and unable to
cope with, the adverse effects of climate change, including
associated climate variability and extremes. Vulnerability is
a function of the character, magnitude, and rate of climate
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change and variation to which a system is exposed, its sensi-
tivity, and its adaptive capacity.

Other terms describe how ecosystem processes that are
affected by climate change will influence vegetation. In
general, stressors are any physical, chemical, or biologi-
cal entity that can induce an adverse ecosystem response.
Stressors can arise from physical and biological alterations
of natural disturbances, increased unmanaged demand for
ecosystem services (such as recreation), alterations of the
surrounding landscape, chemical alterations in regional air
quality, or a legacy of past management actions (Joyce et al.
2008).

Management

Climate change adaptation is an adjustment in natural or
human systems in response to actual or expected climatic
stimuli or their effects, which is intended to moderate harm
or exploit beneficial opportunities (Spittlehouse and Stewart
2004). Adaptation is often referred to as “preparedness,”
and is based on scientifically supported strategic and tactical
activities that support sustainable resource management.
Adaptation addresses specific aspects of the sensitivity of
resources to an altered climate. An adaptation tactic is a
specific action described in management and planning docu-
ments that supports adaptation strategies and is implemented
on the ground (e.g., reducing stem density and surface fuels
in a dry mixed-conifer forest, or increasing culvert size on
roads along a stream that is expected to have higher flood
volumes) (Joyce et al. 2008; Millar et al. 2007a; West et al.
2009). Assisted migration is deliberately planting species to
colonize new habitats.

In an ideal sense, ecological restoration is defined as the
practice of reestablishing historical plant and animal com-
munities in a given area and the renewal of ecosystem and
cultural functions necessary to maintain these communities
now and into the future (Egan and Howell 2001). However,
this ideal may be impossible to manage because: (1) little
is known about historical conditions; (2) many key species
may already be lost; (3) some efforts may be prohibitively
expensive; and most importantly, (4) future climates will
create novel ecosystems. As a result, The Society for
Ecological Restoration has opted for a definition that states
that ecological restoration is “the process of renewing and
maintaining ecosystem health”.

The USFS manual (FSM) direction contained in FSM
2020 includes objectives and a policy for restoration. The
objectives of the USFS ecosystem restoration policy are to:

1. Restore and maintain ecosystems that have been
damaged, degraded, or destroyed by reestablishing
the composition, structure, pattern, and ecological
processes.

2. Manage for resilient ecosystems that have a greater
capacity to withstand stressors, absorb and recover
from disturbances, and reorganize and renew
themselves, especially under changing and uncertain
environmental conditions.

130

EFFECTS OF CLIMATE CHANGE ON FOREST VEGETATION IN THE NORTHERN ROCKIES REGION

3. Achieve long-term ecological sustainability and
provide a broad range of ecosystem services to
society.

The USFS emphasizes ecosystem restoration across all
National Forest System lands with the goal of attaining
resilient ecosystems. All strategic plans, including the USFS
Strategic Plan, land and resource management plans, and
area plans, must include goals and objectives to sustain the
resilience and adaptive capacity of aquatic and terrestrial
ecosystems by reestablishing, maintaining, or modifying
their composition, structure, function, and connectivity. The
goals and objectives must be established within this frame-
work as defined by laws, Indian treaties and tribal values
and desires, and regulations. The goals and objectives also
must consider public values and desires, social concerns,
economic sustainability, the historical range of variability,
ecological integrity, current and likely future ecological
capabilities, a range of climate and other environmental
change projections, the best available scientific information,
and technical and economic feasibility to achieve desired
conditions for National Forest System lands. A primary ele-
ment of an integrated approach is to identify and eliminate
or reduce stressors that degrade or impair the ecosystem.
Restoration activities should also take into account social
and ecological influences at multiple scales and incorporate
the concept of a dynamic system and ecological trajectory.
Some ecosystems may have been altered to such an extent
that reestablishing components of the historical range of
variability may not be ecologically or economically possi-
ble. Therefore, goals and activities should focus on restoring
the underlying processes that create functioning ecosystems.

Functional restoration, which is the restoration of abiotic
and biotic processes in degraded ecosystems, focuses on
the underlying processes that may be degraded, regard-
less of the structural condition of the ecosystem. Whereas
ecological restoration tends to seek a historical reference
condition, functional restoration focuses on the dynamic
processes that drive structural and compositional patterns.
Functional restoration aims to restore functions and improve
structures with a long-term goal of restoring interactions
between function and structure. It may be, however, that a
functionally restored system will look very different from
the historical reference condition in terms of structure and
composition, and these disparities cannot be easily corrected
because some threshold of degradation has been crossed or
the environmental drivers, such as climate, that influenced
structural and (especially) compositional development have
changed.

Assessment Levels

This chapter uses three levels to assess the impacts of cli-
mate change on forest vegetation: species, vegetation types,
and resource concerns. We selected these levels and their
elements to ensure flexibility when considering the complex
ecological concerns across the Northern Rockies. Not only
did this structure facilitate consistent and comprehensive
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assessments for the major management concerns identified
in this chapter, but it also allows for the addition of new ele-
ments that may be identified in the future.

Species

At the finest level of assessment, we address climate
change effects at the species or species group level. We al-
lowed for the use of species groups by aggregating species
by genera, guilds, plant functional types, or lifeforms. In
this chapter we had only one species group: all cottonwood
species (Populus trichocarpa, P. angustifolia, P. deltoides).
This allows us to address regional concerns about important
individual species or species groups that might be adversely
affected by climate change. All tree species cannot be ad-
dressed, so the list of species and species groups included
here represents only those species that are identified by the
government agencies in the Northern Rockies as critical for
addressing both management and climate change concerns.

Vegetation Types

Vegetation type assessment addresses climate change
concerns at a coarse vegetation community type level so that
future evaulations can be spatially described using a map or
geographic information system layer. Five forest vegetation
types are assessed to summarize potential climate change
impacts: dry ponderosa pine (Pinus ponderosa)/Douglas-fir
(Pseudotsuga menziesii) forests; western larch (Larix oc-
cidentalis) mixed mesic forests; mixed mesic western white
pine (Pinus monticola), western redcedar (Thuja plicata),
western hemlock (Tsuga heterophylla), and grand fir (4bies
grandis) forests; lodgepole pine (Pinus contorta) mixed sub-
alpine forests; and whitebark pine (Pinus albicaulis) mixed

Figure 6.2—Potential
vegetation types for the
entire NRAP assessment
area by the five
geographic subregions.
This map was created
from the LANDFIRE
Biophysical settings
map by aggregating the
National Vegetation
Classification Standard
vegetation types into a
set of vegetation types
that has some meaning

. Vegetation Types
at this coarse scale.
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upper subalpine forests. These types are shown in both an
existing vegetation map (fig. 6.1) and a potential vegetation
map (fig. 6.2). Both maps and resultant categories were de-
rived from LANDFIRE data (Rollins 2009), which covered
the entire Northern Rockies region. Many of the estimated
effects of climate change were based on evaluations of MC2
model simulations (see MC2 section), and figure 6.3 por-
trays the MC2 vegetation types used to generate the model
results in Appendix 6A. The potential vegetation type map
and MC2 map can be used to estimate species assemblages
in the absence of disturbance.

Resource Concerns

Three resource concerns related to forest vegetation are
also addressed in this report. First, we considered the impact
of climate change and vegetation response on landscape het-
erogeneity, defined as the diversity in landscape structure or
patch characteristics. We assume that landscapes with high
heterogeneity are more resilient to disturbance (Ahlqvist and
Shortridge 2010; Oliver et al. 2010; Turner 1987). The sec-
ond resource concern is timber production, as represented
by timber volume. We attempted to address impacts of
climate change on timber production solely via vegetation
response, not from disturbance. Finally, we describe climate
impacts on carbon reserves across the Northern Rockies.
Resource specialists in the Northern Rockies region selected
these resource concerns.

Geographic Stratification

The Northern Rockies region was stratified into five
geographic subregions (fig. 6.1). The Western Rockies
subregion includes northwestern Montana and northern
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Figure 6.3—The MC2 vegetation
types for the assessment
area by the five geographic
subregions. This map was
created from an MC2
modeling effort (see appendix
6A).
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and central Idaho. The Central Rockies subregion includes
west-central Montana and all lands west of the Continental
Divide and north to Canada. The Eastern Rockies subre-
gion includes the Rocky Mountain Front and southwestern
Montana. The GYA includes all lands that have been offi-
cially designated as part of this high-profile area, including
Yellowstone National Park, Grand Teton National Park,
the southern end of the Gallatin National Forest and the
Beaverhead-Deerlodge National Forest, the western side
of the Custer National Forest, and parts of the Shoshone,
Bridger-Teton, Caribou, and Targhee National Forests.
Last, the Grassland area includes all lands east of the
Eastern Rockies subregion boundary to the eastern border
of the USFS Northern Region.

The main purpose of dividing the assessment area into
five subregions was to restrict climate change projections,
impacts, and adaptation options to a specific part of the
Northern Rockies region. The five subregions shown in
figure 6.1 were included for all authors to standardize the
spatial scales of their sections, but some authors of this
chapter chose to evaluate climate change impacts at the
national forest or finer scale. As a result, this chapter does
not include formal sections for each subregion. Instead, the
authors tuned their material to the subregion if the data and
information allowed.

Uncertainty

Uncertainty is an expression of the degree to which
something is unknown. Uncertainty can result from a lack
of information or from a disagreement about what is known
or even knowable. Uncertainty can also result from known
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and unknown errors. It may have many types of sources,
from quantifiable errors in data to ambiguously defined con-
cepts or terms, or uncertain projections of human behavior.
Uncertainty can therefore be represented by quantitative
measures, such as a range of values, or by qualitative state-
ments, such as assessment of the judgment of a team of
experts. Uncertainty differs from variability; variability is
the actual range of a value or ecosystem variable.

All the climate models (global circulation models or
GCMs) that predict rapidly warming climates have a high
degree of uncertainty (IPCC 2007). Although there is little
debate that atmospheric carbon dioxide (CO,) is increasing
and that this increase will cause major changes in climate
(IPCC 2007), there is a great deal of uncertainty about the
magnitude and rate of climate change (Roe and Baker 2007;
Stainforth et al. 2005). This uncertainty will almost un-
doubtedly increase as climate projections are made at finer
resolutions, for different geographic areas, and for longer
time periods (Knutti and Sedlacek 2013). The range of pos-
sible projections of future climate from GCMs (an increase
in global average annual temperature of anywhere from 2.9
to 14.4 °F ) is much greater than the variability of climate
over the past two or three centuries (Stainforth et al. 2005),
and the variability across GCMs is greater than the variabil-
ity in the climate projections of each model. Because it is
impossible to know whether society will respond to climate
change by employing technological innovations to minimize
CO, emissions or to mitigate its effects, most GCMs also
simulate a suite of scenarios that capture a range of pos-
sible strategies to deal with climate change, introducing
yet another source of uncertainty. Moreover, it is the high
variability of climate extremes, not the gradual change of
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average climate, that will drive most ecosystem responses to
the climate-mitigated disturbance and plant dynamics, and
these rare, extreme events are the most difficult to predict
(Easterling et al. 2000).

Yet another source of uncertainty in attempting to predict
ecosystem change is introduced when we try to predict how
the Earth’s vegetation and ecosystems will respond to highly
uncertain climate change (Araujo et al. 2005). Mechanistic
ecological simulation of climate, vegetation, and disturbance
dynamics across landscapes is still in its infancy (Keane
and Finney 2003; Sklar and Costanza 1991; Walker 1994).
Many current ecosystem simulation models are missing the
important direct interactions of disturbance, hydrology, and
land use with climate that will surely dictate effects on plant
distributions (Notaro et al. 2007). Little is known about the
interactions among climate, vegetation, and disturbance, and
interactions among different disturbance regimes (fire and
beetles, for example) could create novel landscape behav-
iors. It is also difficult to determine how the critical plant
and animal life cycle processes of reproduction, growth,
and mortality will respond to changing climate (Gworek et
al. 2007; Ibanez et al. 2007; Keane et al. 2001; Lambrecht
et al. 2007). These modeling uncertainties greatly increase
as projections are made further into the future and at finer
spatial scales (Xu et al. 2009).

Managers must account for these uncertainties when
using the information in this report in any land manage-
ment plan or analysis. Sometimes there is less uncertainty
in implementing conventional restoration designs than in de-
signing restoration or treatment plans that attempt to account
for climate change impacts. For some areas or resources,
such as the restoration of western larch ecosystems, ad-
dressing climate change in management plans may require
only minor changes to current management practices. In
other situations, major changes to current treatment designs
may be needed, such as in ponderosa pine ecosystems.

All climate effects will be manifested in different ways on
different landscapes, and as a result, there is no magic “one
size fits all” prescription that can be adopted everywhere.
The decision to modify management actions to include
climate change effects must always include an assessment of
the uncertainty of that modification and, most importantly,
local conditions.

Climate Change Assessment Techniques

Anticipating ongoing rapid climate change, ecologists
are attempting to project the effects of those changes on
myriad ecosystem processes across various scales (Clark
et al. 2001; Joyce et al. 2014; Schumacher et al. 2006).
Using traditional ecological field methods to explore climate
change response may be difficult because of the complex
interactions among ecological processes, disturbance, and
climate at multiple temporal and spatial scales (McKenzie et
al. 2014). It would simply be too costly and time-intensive
to sample at the large spatial scales and long timespans need
to quantify vegetation response (Keane and Finney 2003).

USDA Forest Service RMRS-GTR-374. 2018
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In general, there are four techniques to assess and project
the effects of climate change on vegetation and other re-
source concerns. The first is expert opinion, and it involves
having experts in the fields of climate change, ecology, and
vegetation dynamics qualitatively assess what will happen
to vegetation under various climate change scenarios. Most
of the papers about climate change effects on vegetation
used in this report were written by experts who have evalu-
ated future climate projections and used their experience to
deduce how vegetation will respond to different climates.
Information from these papers was included in this report,
but expert opinions were used only when there was no other
information from the other assessment techniques.

The second technique is field assessment, where ex-
tensive field sampling or remote sensing projects monitor
vegetation change in response to changing climate. Field
sampling involves establishing plots in networks across
the landscape, detecting change between plot measure-
ments, and correlating these changes to climate data. Van
Mantgem and Stephenson (2007), for example, related
high tree mortalities to climate change using a network of
monitoring plots. Demography studies track individuals
over time, rather than using periodic plot-level inventories,
to fully understand the role of climate relative to other risk
factors such as competition, variation in physiology and
function, and vulnerability to insects and pathogens. Such
demography datasets are rare (Iverson and McKenzie 2013),
but one study has tracked more than 27,000 individuals of
40 species for about a decade to address interactions over
an area of the southeastern United States (Clark et al. 2011).
The only demographic dataset available for the Northern
Rockies region is the USFS Forest Inventory and Analysis
(FTA) database. The extensive FIA dataset has been sum-
marized to describe vegetation shifts due to climate change
elsewhere (McNulty et al. 1994) but not in the Northern
Rockies region. Although field assessment techniques are
the most reliable and most useful, they are often intractable
(see previous paragraphs) because of the large areas and
long time periods needed to properly sample vegetation
at the appropriate scales to detect changes as a result of
climate.

The third method involves the use of statistical analysis
to create empirical models that project climate change
response. Most of the studies that project the habitat, range,
or occupational shifts of Northern Rockies tree species from
climate warming use species distribution models (SDMs)
to project future geographic ranges (Hansen and Phillips
2015; Iverson and Prasad 2002; Warwell et al. 2007). SDMs,
also called bioclimatic envelope models, niche models, and
species envelope models, are developed by linking current
climate with the current distribution of a species of interest
by means of advanced statistical modeling (Guisan and
Zimmermann 2000; Watling et al. 2012). Then, using the
statistical model, a future species distribution is computed
using projected future climate data as inputs rather than
the past climate. However, SDMs are inherently flawed for
projecting future species distributions in that they relate past
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species occurrence to climate, resulting in predictions of
potential species habitat, not species distribution (Iverson
and McKenzie 2013). The projected potential habitat is only
reflective of the distribution of species today and does not
relate climate to historical distributions. One of the biggest
limitations to this approach is that many studies have now
found that most species distributions are not in equilibrium
with climate, thereby causing SDMs to miss those areas
conducive to occupation by the species but where the species
is currently absent. Moritz and Agudo (2013), for example,
found many species in the fossil record existed over a wider
range of climates than is recorded today.

Another limitation of empirical models is that the critical
ecological processes, such as pollination, cone production,
seed dispersal, seed germination, seedling establishment,
tree growth, mycorrhizae influences, competitive interac-
tions, disturbance, mutualism, and mortality, as well as
the many disturbance processes, are not represented in
SDMs, yet these are the main processes that control species
abundance and presence (Iverson and McKenzie 2013;
Watling et al. 2012). Dullinger et al. (2012), for example,
found that range shifts predicted by SDMs retracted by more
than 40 percent when seed dispersal was included in the
prediction process. Girardin et al. (2008) found that process
models were much better at projecting climate change ef-
fects on tree growth because they accounted for changes in
soil moisture and growing season. Moreover, the climates
used to develop SDMs represent a very small slice of time
(50-100 years) relative to the long time periods that existing
trees, such as the long-lived whitebark pine (>1,000 years
of age), have survived on the landscape today, so SDMs
cannot capture the climate for all stages in the life cycle of
today’s trees. Most mature trees used to evaluate species
occurrence in statistical models may have lived for hundreds
to thousands of years and continued to survive despite major
changes in climate. Along those same lines, one of the major
problems of SDM modeling is that there is no sense of how
long it will take for a species to be eliminated from one site
and effectively populate a new site; because migration is
a slow process, the timing of SDM model results are often
incompatible with management timeframes. In addition,
SDMs assume that the current distribution of the species is
a consequence of climate alone, yet we know that fire exclu-
sion, exotic diseases, and management actions have also
influenced species occurrence (Gustafson 2013; Iverson and
McKenzie 2013). Therefore, it is difficult to have confidence
in SDM projections for fine-scale applications; they are
informative, but not prognostic, especially on the short time
scales of decades and half-centuries required by land man-
agement. This is especially true when addressing the high
uncertainty of the GCM-derived climate used by the SDMs.

The last and perhaps the most effective technique uses
simulation modeling to assess climate-mediated vegetation
responses (Gustafson 2013; Iverson and McKenzie 2013;
McKenzie et al. 2014). Here, future projections of climate
are used as inputs to simple-to-complex ecological models
to simulate the climate change effects (Baker 1989; He et
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al. 2008; Merriam et al. 1992; Perry and Millington 2008).
A variety of existing models simulate ecological change at
broad (global, regional) and fine (ecosystem, stand, point)
scales (Bugmann 2001; Cramer et al. 2001). However,
landscape-scale (40—400 square miles) models are perhaps
the most critical for predicting effects of climate change
because this is a key scale at which most ecosystem pro-
cesses and links are manifested and the scale at which most
management decisions are made (Cushman et al. 2007;
Littell et al. 2011; McKenzie et al. 2014). Finer-scale stand
models cannot incorporate important exogenous distur-
bance regimes because of their limited spatial extent, and
coarse-scale dynamic global vegetation models (DGVMs)
are unable to simulate important plant-, species- and
canopy-level competition and disturbance effects, such as
successional shifts, community dynamics, and differential
disturbance effects among species (McKenzie et al. 2014).

To realistically model species composition changes, a
mechanistic, process-driven simulation approach might be
preferable to emphasize those physical drivers of vegetation
dynamics that are directly related to climate (Gustafson
2013). However, mechanistic model design is often overly
complex and therefore currently intractable because of
(1) overly detailed parameterization of life histories and
physiologies for all species, (2) high complexity of many
interacting disturbance factors, and (3) necessarily high-
resolution modeling over large areas (Lawler et al. 2006).
Dynamic global vegetation models, such as the MC2 model
used in this report (see next subsection), operate at scales
from regional (hundreds of miles) to global (degrees of
latitude and longitude). Although DGVMs are valuable for
projections of climate change across large domains, these
models aggregate species into lifeforms or plant functional
types (PFTs) using structural or functional attributes, which
may be useless to local managers (Bachelet et al. 2003;
Bonan 2008; Neilson et al. 2005). Most of these models
project shifts to more drought-tolerant and disturbance-
tolerant species or PFTs for future climates. This general
shift in vegetation may be offset by physiological changes
induced by CO, fertilization, as suggested by a DGVM
(MC1) that links water use efficiency to CO,-simulated
expansion of forests into areas where the climate is currently
too dry (Bachelet et al. 2003). This issue deserves further
study to resolve the extent and duration of such mitigating
effects of CO,; projected effects could differ substantially
depending on how relationships are modeled.

To be effective at realistically predicting climate change
effects, ecosystem models must simulate disturbances,
vegetation, and climate, and also their interactions across
multiple scales (Purves and Pacala 2008). Yet few models
simulate ecosystem processes with the mechanistic detail
needed to realistically represent important interactions
among landscape processes, vegetation dynamics, distur-
bance regimes, and climate (Keane et al. 2015b; Riggs et al.
2015). Direct interactions between climate and vegetation,
for example, may be more realistically represented by
simulating daily carbon (photosynthesis, respiration), water
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(evapotranspiration), and nutrient (nitrogen, phosphorus)
dynamics at the plant level than by simulating vegetation
development annually using state-and-transition modeling
approaches (Keane et al. 2015a). A fully mechanistic ap-
proach, however, may be difficult for both conceptual and
computational reasons, and some simulated processes may
always require a stochastic or empirical approach (Falk et
al. 2007; McKenzie et al. 2014).

We used output from the DGVM MC2 to standardize
our evaluation of change and vegetation responses for
the Northern Rockies region. Output from this model is
presented in Appendix 6A, and this output was used by all
authors in developing the material on future climate effects
on vegetation and in the vulnerability assessment. We did
not use MC2 simulated species projections in the following
sections.

MC2 Model

MC?2 is a new implementation of the MC1 DGVM,
which was created to assess the impacts of global climate
change on ecosystem structure and function at a wide
range of spatial scales from landscape to global (Bachelet
et al. 2001; Peterman et al. 2014). MC2 is short for “MClI
version 2.” MC1 was produced by combining physiologi-
cally based biogeographic rules, originally defined in the
Mapped Atmosphere-Plant-Soil System (MAPSS) model
(Neilson 1995), with biogeochemical processes packaged
in a modified version of CENTURY (Parton et al. 1987)
and a new fire disturbance model, MCFIRE (Lenihan
et al. 1998, 2003). The three linked modules simulate
biogeography (lifeform interpreter and vegetation classi-
fier), biogeochemistry, and fire. The main functions of the
biogeographic module are to (1) predict lifeforms, that is,
the composition of deciduous-evergreen tree and C3-C4
grass lifeform mixtures; and (2) classify those lifeforms and
their associated biomass into different vegetation classes
using a climatologic rule base. The biogeochemical module
simulates monthly carbon and nutrient dynamics for a given
ecosystem. Aboveground and belowground processes are
modeled in detail and include plant production, soil organic
matter decomposition, and water and nutrient cycling.
Parameterization of this module is based on the lifeform
composition of the ecosystems, which is updated annually
by the biogeographic module. The fire module simulates the
occurrence, behavior, and effects of severe fire. Allometric
equations, keyed to the lifeform composition supplied by
the biogeographic module, are used to convert aboveground
biomass to fuel classes. Fire effects, specifically plant mor-
tality and live and dead biomass consumption, are estimated
as a function of simulated fire behavior (fire spread and fire
line intensity) and vegetation structure. Fire effects feed
back to the biogeochemical module to adjust levels of vari-
ous carbon and nutrient pools to alter vegetation structure
(e.g., leaf area index levels and woody vs. grass-dominated
vegetation).
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The MC2 model simulations were generated by Tim
Sheehan (Conservation Biology Institute). Inputs to
the MC2 model include soil (depth, texture, and bulk
density), annual average atmospheric CO, concentra-
tion, and monthly average climate variables (monthly
precipitation, mean vapor pressure, and means of daily
maximum and minimum temperatures). Historical climate
data (1895-2008) were obtained from the PRISM group
(Daly et al. 2008) and were upscaled to 30-arc-second
resolution (~0.23 square mile). Soils data were derived
from STATSGO (Soil Conservation Service 1991) by
Kern (1995, 2000) and were scaled to the resolution of
the climate data. Future climate projections were avail-
able from various GCMs, and we chose the MIROC 3.2
medres (Hasumi and Emori 2004) based on its relatively
high overall ranking according to Mote and Salathé
(2010). GCM future projections were downscaled to 0.23
square mile using the delta or anomaly method (Fowler et
al. 2007). Anomalies between future and mean monthly
historical (1971-2000) values were calculated to project
estimates for each climate variable and each future month
across the study area. We evaluated model output based on
two greenhouse gas emissions scenarios described in the
IPCC Special Report on Emissions Scenarios (Naki¢enovié¢
et al. 2000): A1B and A2. Future projections based on
the most recent generation of emissions scenarios, the
Representative Concentration Pathways, were not avail-
able across the entire Northern Rockies region, but the two
generations of models are relatively similar in their esti-
mates of global temperature change and spatial patterns of
temperature and precipitation change (Knutti and Sedlacek
2013).

To evaluate potential climate effects on vegetation
assemblages and disturbance regimes and the interac-
tion with land management, we evaluated a suite of
vegetation-related and fire occurrence variables output by
the MC2 model under historical (1971-2000) conditions
and future projections for mid-century and end-of-century.
Specifically, we compared past vegetation distributions
across the Northern Rockies with fire suppression and
without, and made similar comparisons for two future
years, 2050 and 2100, under both the A1B and the A2
emissions scenario (Appendix 6A). Aboveground pro-
cesses were examined by comparing the amount of carbon
in live and dead biomass for three time periods (histori-
cal, 2030-2050, 2080-2100) and with and without fire
suppression (Appendix 6A). Potential evapotranspiration
was also evaluated to compare possible changes in aridity
(over similar timespans and land management measures).
Finally, projected changes in fire disturbance were
examined by comparing estimated fire rotation and the
percentage of the Northern Rockies burned by time period
and suppression management (Appendix 6A).
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Forest Vegetation
Responses to Climate

In general, many scientists expect the effects of climate
change on forest vegetation to be primarily driven by veg-
etation responses to shifts in disturbance regimes, and then
secondarily, through direct effects of vegetation interactions
with climate through shifts in regeneration, growth, and
mortality processes at both individual plant and community
scales (Dale et al. 2001; Flannigan et al. 2009; Temperli et
al. 2013). Most of the expected climate changes are reduced
precipitation and increased temperatures (see chapter 3),
resulting in a reduction in water available to trees and un-
derstory plants. These effects will be highly variable across
time, from year to year and day to day, and across space,
as the footprint of the new climate is manifested at fine to
coarse scales. Trees will respond to projected reduced water
availability, higher temperatures, and changes in growing
season in diverse manners, but because trees cannot pick up
their roots and move, any changes in vegetation composition
and structure will be the result of changes in both the life
cycle processes and responses of a plant to disturbance. This
section discusses some possible general responses of trees
and forest vegetation to projected climates.

Individual Plant

The effects of climate on forest vegetation can occur
as both direct and indirect effects. Direct effects are the
immediate and long-term impacts of increased temperature
and decreasing water availability on vegetation life cycle
processes, as discussed in detail throughout this document.
But indirect effects, such as changes to fire, insect, and dis-
ease regimes, may be more important and long-lasting than
direct effects.

In short, there are several important modes of response
of plants to changing climates (Joyce and Birdsey 2000).
The first is changes in productivity; plant productivity may
increase in the future because of increasing temperatures,
longer growing seasons, more variable precipitation, and
CO, fertilization (Aston 2010; Joyce 1995). Increases and
decreases in productivity are related to changes in cone
crops, tree vigor, and tree defenses. The window of success-
ful seedling establishment will change (Ibafiez et al. 2007);
increasing drought and high temperatures may narrow the
time for effective regeneration in low- elevation Northern
Rockies forests and widen the window in high elevation
forests. Climate may directly cause tree mortality due to
temperature or moisture stress on trees; there have been
increases in tree mortality around the world from increas-
ing temperatures and drought (Allen et al. 2010; Williams
et al. 2010). This of course is related to productivity, but
not entirely. Extreme climate events, such as late growing-
season frosts and high winds causing blowdowns, may
increase because of the predicted increases in climate vari-
ability (Notaro 2008), and these events may cause mortality
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events (Joyce et al. 2014). There will also be disruptions

in phenology as climates change; many plants may sustain
considerable damage or mortality as phenological cues and
events are mistimed with new climates (e.g., flowering oc-
curring during dry portions of the growing season) (Cayan
et al. 2001). Another related mode is the genetic limitation
of the species or tree to respond to climate change (Hamrick
2004); specialists may become maladapted to new climates
(St. Clair and Howe 2007). Last, plants can respond to
climate-mediated changes in disturbance in myriad ways
(Aitken et al. 2008). This section deals only with those
causal mechanisms that drive direct climate responses; the
indirect climate-mediated disturbances and responses are
detailed in a later section.

Direct effects of temperature on plant growth may
increase both photosynthesis and respiration (Waring and
Running 1998). Plant photosynthesis rates increase with
temperature up to an optimum and then decline thereafter,
with the optimum being species-dependent. If projected
temperatures exceed the photosynthetic optima for Northern
Rockies tree species, such as those in the lower elevation
forests, then plant growth might suffer. However, there
may be many portions of the Northern Rockies where
temperature increases probably will not exceed optima,
and there may be photosynthetic gains, such as in montane
and subalpine areas. This, of course, depends on whether
sufficient water is available to support increased photosyn-
thesis. Respiration also increases with temperature; thus,
photosynthetic gains may be lost through growth and main-
tenance respiration. Respiration occurs even when stomata
are closed, so high temperatures coupled with low water
availability may result in high respirational losses with few
photosynthetic gains (Ryan et al. 1995).

Increased atmospheric CO, levels may also directly
modify ecophysiological growth processes. Oxygen and
CO, compete for active Rubisco (primary enzyme used in
photosynthesis) sites. Higher atmospheric CO, concentra-
tions may increase internal leaf CO, concentrations, thereby
ensuring CO, reaches most of the Rubisco sites, which can
result in photosynthetic increases of 2 to 250 percent de-
pending on site and species (Ehleringer and Cerling 1995).
Conifers may also have increased water use efficiency in
future water-limited environments, and increased water use
efficiency may compensate for decreases in water avail-
ability and increase growth rates in water-rich environments
(Waring and Running 1998). Water use efficiency is the ratio
of water used for plant metabolism (photosynthesis and res-
piration) to the water lost to transpiration. With higher CO,
concentrations in the atmosphere, the plant would obtain
more CO, during the time the stomata are open, resulting in
less loss through transpiration. Leaf biomass is usually the
first to increase as plants attempt to optimize photosynthesis
by growing more photosynthetically active tissue (i.e., more
leaf area). However, increases in leaf area index are often
transitory and greatly dependent on available nitrogen and
water. Increases in leaf area might also result in greater
rainfall interception, higher snow collection, and greater
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canopy evaporation. Increased atmospheric CO, levels and
increasing temperatures can also interact to increase growth.
Photosynthesis has temperature optima that differ by tree
species, and warmer temperatures might be closer to the
new temperature optima, especially during the cooler early
growing season, perhaps resulting in faster growth.

Another major direct effect of warming temperatures is
longer growing seasons (Cayan et al. 2001; McKenzie et
al. 2008); that is, increases in temperatures often lengthen
growing seasons for forest plants. There are concerns that
future climates are projected to be highly variable, and the
coupling of highly variable daily weather with highly vari-
able growing seasons may increase the chances that plants
will be more susceptible to adverse weather during fragile
phenological stages (Hanninen 1995). Warm conditions in
the early spring, for example, might stimulate bud burst and
early growth, only to have these expanding tissues frozen by
subsequent frost events. Plant phenological cues may be dis-
rupted or triggered inappropriately because of high weather
variability, and while this variability might result in minor
damage for mature individuals, it may be fatal for seedlings.
This may be especially true in localized frost pockets and
narrow valleys that accumulate cold air, resulting in frequent
frost during the early growing season. Warmer temperatures
may reduce and perhaps eliminate growing season frosts in
mountain valleys, thereby allowing more frost-susceptible
species, such as ponderosa pine and western larch, to exist
in traditional lodgepole pine, subalpine fir (4bies lasio-
carpa), and Engelmann spruce (Picea engelmannii) habitats.
Chmura et al. (2011) note that increased temperatures
may result in decreased winter chilling that could result
in delayed bud burst, reduced flowering, and lower seed
germination. Winter dormancy prevents trees from growth
flushes during warm winter periods, and future climates may
trigger changes in winter dormancy and subject trees to high
mortality during those cold snaps after the winter warming.

Snowpack dynamics are also directly influenced by
changes in temperature and precipitation and declining
snowpacks are expected under future climates (Mote et al.
2005). Most of the water used by Northern Rockies trees
usually comes from snowmelt (Waring and Running 1998),
so the amount and duration of snowpack have the potential
to influence regeneration and growth patterns of forest
communities throughout the region. Warming temperatures
may cause earlier snowmelt, leading to an earlier start of
the growing season. However, earlier snowmelt could also
result in longer periods of low soil water during the remain-
ing part of the growing season, effectively shortening the
growing season. Earlier snowmelt may also result in greater
competition for water across the plants and species that
make up the complex plant communities of the Northern
Rockies. Plants with roots in the topmost layers of the soil
might be able to more effectively capture the rainfall that
used to occur as snowfall. This may favor grasses and some
forbs over shrubs and trees (Daly et al. 2000). The lower
snowpack may allow longer growing seasons in those
subalpine and upper subalpine communities where cold and
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snowpack duration govern tree regeneration and growth;
production and regeneration are likely to increase with
decreasing snowpacks, especially in those high mountain
environments where water is rarely limiting.

An indirect effect of climate change will be the shift in
distribution of microsites that facilitate tree regeneration
(Jones 2013). While effects of climate change at coarser
scales mostly relate to tree growth and mortality, changes
to microsite conditions will be likely to govern tree re-
generation (Petrie et al. 2016). Microsites suitable for tree
regeneration must be addressed in a spatial and temporal
context. For example, conditions for tree establishment may
be suitable all year on small microsites of up to 1.2 square
yards, whereas larger microsites may be conducive to regen-
eration only during the spring. Researchers in Washington
State found that even with major changes in climate, there
probably will be ample microsites that are suitable for
regeneration of trees (Little et al. 1994). In the Northern
Rockies, however, projected climate changes will prob-
ably result in smaller and more ephemeral microsites for
regeneration. The size, distribution, and duration of suitable
microsites potentially will vary more each year and most re-
generation might occur only during “wave” years (i.e., years
with favorable weather conditions) where plentiful suitable
microsites are widely available for long periods of time (see
next subsection).

Climate change can also indirectly affect vegetation by
altering mycorrhizae dynamics (Amaranthus et al. 1999).
Nearly all Northern Rockies conifers depend on mycor-
rhizae for enhanced water use and nutrient absorption. Even
whitebark pine, a species that lives in areas with the highest
precipitation in the Northern Rockies, has a mutualistic
relationship with several species of fungi (Mohatt et al.
2008). Many trees, particularly those in the seedling and
sapling stages, need mycorrhizae to survive, especially
in areas of periodically severe water shortage (Walker et
al. 1995). The migration of Northern Rockies tree species
to more favorable sites in future climates may be entirely
governed by the ability of the mycorrhizae to also populate
these areas to allow or facilitate tree species establishment
(Lankau et al. 2015). Allison and Treseder (2008) found
warming increased fungal interactions, but drying caused
significant decreases. Without viable populations of mycor-
rhizae, tree species movement might be significantly slowed
or stopped. New microsite conditions created by predicted
future climates may be inhospitable to mycorrhizae, but so
little is known about how these fungi shift with climate that
it is difficult to evaluate how they will respond to climate
change (Fitter et al. 2000). Mycorrhizae responses to
climate change after increased fire may be more important;
fire may reduce the fungi in some areas. This may be espe-
cially true if the large, severe fires projected for the future
actually occur (Stephens et al. 2014). Severe fires may kill
all trees in a large burn, thereby eliminating the host for
the mycorrhizae, and perhaps eventually the mycorrhizae
themselves. Establishment of trees into these burned areas
can be delayed for long periods, decades or even centuries,
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as mycorrhizae and trees revegetate the area together
(Schowalter et al. 1997).

Perhaps the most important future indirect ecological
concern is the role of today’s forest conditions and how they
affect the ability of tree species to respond to future climate
change. Ample research has shown that past and future
human land use activities often result in ecological impacts
that overwhelm any direct or indirect climate change effects
(Moritz and Agudo 2013). Nearly a hundred years of fire
suppression activities have resulted in increased tree regen-
eration and denser forest canopies, coupled with increases in
duff, litter, and down dead woody fuels (Arno 1998; Ferry et
al. 1995; Keane et al. 2002). Trees in these dense forests are
in greater competition for the little water that is available for
growth. As a result, trees in many fire-excluded stands are
stressed, making them highly susceptible to mortality from
secondary stressors, such as insect and disease outbreaks
(Anderegg et al. 2012; Wikars and Schimmel 2001), drought
(Allen et al. 2010), and fire (Hood et al. 2007). Increased
tree densities may also foster increased severity of subse-
quent disturbances, resulting in more individuals dying and
creating larger patches of mortality.

Another ecological concern closely related to fire
exclusion is the current climate-mediated decline in forest
communities that have recently become established as a
result of fire exclusion. Some forests in the region, includ-
ing the limber pine (Pinus flexilis) communities along
the Rocky Mountain front, became established during the
fire exclusion era but may now be declining in some por-
tions of the Northern Rockies region because of increased
drought and nonative disease (white pine blister rust). Other
Northern Rockies forests, such as ponderosa pine, now
have atypical forest compositions and structures due to the
century of fire exclusion, and these now denser forests are
stressed from both overcrowding and climate change (Millar
et al. 2007b). Had fires been allowed to burn, there would
probably be significantly less mortality, from either climate
change or disturbance, compared to what we are experienc-
ing today, and the mortality levels probably would not be
projected to be as high in the future (Holsinger et al. 2014).
Moreover, there are areas in the region where trees have
encroached into dry grasslands (Arno and Gruell 1986),
montane meadows, and subalpine forb fields (Butler 1986).
Now, due to increased temperatures and decreased water
availability, some of these recently established trees are
dying. Examples include the limber pine expansion along
the Rocky Mountain front (Taylor and Sturdevant 1998),
Douglas-fir encroachment into dry prairie (Arno and Gruell
1986), and subalpine fir encroachment into GYA forb fields
(Bigler et al. 2005). There is concern as to whether climate
change represents a threat to these modern forest types,
which were probably rare in the historical record. Does
increased vulnerability in 100-year-old limber pine forests
really constitute a management concern? Or is the increase
in mortality expected because the forests established in wet
periods of the fire exclusion era?
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Many forest species in the Northern Rockies region may
respond to direct climate warming and drying by expanding
their range into new habitats. Migrating to a new site has
historically been the primary response of plants to climate
change (Huntley 1991). Migration requires that the species
be able to quickly occupy newly desirable sites of the future
before other species get there or to outcompete other species
once they are there. Neilson et al. (2005) detail four basic
components of migration (moving to a new site): fecundity,
dispersal, establishment, and growth. To be successful in the
future, a species must produce enough seeds or propagules
(fecundity) that are easily dispersed to new sites (dispersal),
and the seedlings that become established on these sites
must be able to grow (establishment) so that they can also
produce ample propagules that are then dispersed even
further (growth). As Davis et al. (2005) note, however, the
species also must have the genetic capacity to migrate to
the new climate and survive into maturity. Adapting in situ
can take many forms, such as reducing leaf area to mini-
mize transpiration losses, or surviving perturbations in the
new disturbance regimes created by climate change. Most
Northern Rockies tree species are long-lived and geneti-
cally plastic so that they can survive the wide fluctuations
of weather in the future, but the ability to handle both deep
drought and modified disturbance regimes may be the most
important factor dictating future distributions of forest spe-
cies (Allen et al. 2010).

It is widely thought that warming climates will result in
upward shifts in the elevational distribution of plant species.
For example, Lenoir et al. (2008) found that some plant
species have moved upward in elevation at a rate of 95 feet
per decade. However, it is unclear whether such elevational
shifts will drive long-term changes in forest communi-
ties, or if other predominating forces will outweigh these
upward trends. For example, fire plays a dominant role in
most Northern Rockies ecosystems, determining landscape
structure and processes. Because even more wildfires are
expected as climates change, effects of these large events
may overwhelm any shifts in distributional ranges of for-
est species resulting from climate warming. Further, most
plants in the region have slow migration rates, mostly
because they are adapted to fire and as such rely more on
regenerative organs (e.g., sprouting) than seed dispersal.
Finally, implications of an upward elevational migration on
forest communities need to be considered within a temporal
and spatial context. That is, it may take a century or two
for tree species to demonstrate significant elevational shifts
due to long life cycles, old maturation ages, highly variable
weather, and low dispersal potentials. The potential for tree
species to migrate may be entirely different in each of the
unique mountain ranges in the region, depending on a host
of abiotic and biotic factors (e.g., precipitation levels, inva-
sive species) and available colonizing species.

Most projections for the response of vegetation to climate
shifts are for populations of species, not for communities.
Little is known about how composition and abundance
of biota will change at a community level in response to

USDA Forest Service RMRS-GTR-374. 2018



CHAPTER 6:

climate shifts. Will new plant communities be dominated
by generalist species that can exist across a wide variety of
biophysical settings? Or will future communities be similar
to historical analogs where fire-adapted species dominate?
Will future communities be composed of species collec-
tions that were historically rare? Answers to these questions
have important implications for future land management

in that there is a great deal of synergy between plants and
species in historical communities, such as interacting via
root-grafting, sharing mycorrhizae, and relying on common
pollinators, and future community composition may not
have as many interactions. Moreover, future communities
may not be as diverse because they may be dominated by a
limited suite of species.

Climate change can affect important phases of the life
cycle processes of plants: reproduction, regeneration,
growth, and mortality. Moreover, it can affect plants at
various scales from the needle to the tree to the forest, and
over seconds to days to years to centuries (Eamus and Jarvis
1989). The following subsections detail possible climate
change effects by life cycle processes.

Reproduction

Cone and seed crops for many Northern Rockies trees
could be both adversely and beneficially affected by climate
change (Ibafiez et al. 2007; LaDeau and Clark 2001). Low-
elevation xeric forests might have fewer and smaller cone
crops because of increased stand density and water stress.
Cone crops might also have a lower percentage of viable
seed because of increased tree stress. The infrequency of
cone crops coupled with low seed numbers may result in the
lack of regeneration in recently burned areas, thereby caus-
ing a shift to nonforest vegetation.

The opposite might be true in higher, colder environ-
ments where increased temperatures will increase growing
season length and thereby increase potential for more cone
crops with greater number of seeds. Spruce-fir communities
might produce so much seed that they may overwhelm re-
generation of other conifers, especially after mixed-severity
fires. Subalpine pine species such as whitebark and lodge-
pole pine have unique cone characteristics (whitebark pine
cones facilitate seed dispersal by birds, whereas lodgepole
pine cones may be serotinous and opened only by fire), so
they may need to rely on disturbance for increased cone
abundance.

An indirect result of the interaction of fire, vegetation,
and climate is that as fire becomes frequent, some species,
primarily trees, may be killed by fire before they reach
reproductive maturity and may fail to set cones. Holsinger et
al. (2014), for example, found that fires were projected to be
so frequent in a western Montana watershed that lodgepole
pine seedlings would be killed by fire before they were re-
productively mature (around 15 years). Keane et al. (1990)
found that ponderosa pine forests needed occasional interfire
periods to be greater than 35 years to allow pine seedlings to
grow above the lethal scorch height. If fire is too frequent,
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plants will not be able to grow to reproductive maturity or
the reproductive organs might always be scorched by fire.

Climate warming and increased variability will also
affect the phenology of cone crops, but effects may be mini-
mal as plants adapt to new conditions. Some predict higher
frost mortality of emerging cones due to an earlier onset of
the growing season coupled with high daily temperature
variability and lower flowering and seed germination
because chilling requirements will not be met (Chmura et
al. 2011). Others suggest that frequency and abundance of
cone crops will be reduced in the future because of high
tree stress from drought (Ibafiez et al. 2007). However, the
increased productivity projected for many Northern Rockies
forests may overwhelm minor losses from extreme weather
events over the long run.

With changing climate, some tree species might be
excluded from their current range because warmer tem-
peratures may not allow chilling requirements for the seed
(Shafer et al. 2001). The chilling requirement was a major
evaluation factor in determining climate change vulner-
ability in Devine et al. (2012). Similarly, new climates may
be asynchronous with the phenology of many tree species.
Seed dispersal, for example, may occur at the driest and
warmest times. Phenological keys may be out of sync in
new climates, especially in a highly variable future, result-
ing in reduced flowering, growth, and reproduction. On the
other hand, these phenological miscues may also occur in
disturbance agents; highly variable weather may result in
occasional deep frosts that kill beetle larvae, for example.

Regeneration

The life cycle phase in which most tree species are
vulnerable to climate is regeneration (Solomon and West
1993). Most tree species in the region reproduce by produc-
ing seeds that fall to the ground to germinate and grow into
seedlings that then become mature trees. Microsite condi-
tions needed for successful establishment are so demanding
that seed germination and survival, especially for seeds that
are wind dispersed, are rarely successful (Anderson and
Winterton 1996). The successfully germinated seed pro-
duces a fragile radicle (embryonic root) that must penetrate
the litter, then duff, then soil to put down a root system that
will eventually feed the growing aboveground tissue. This
penetration process demands moist soil conditions or the
radicle and associated cotyledon (developing leaves) and
hypocotyl (stem) will dry and die. To become a seedling, the
seed requires suitable moisture conditions for long periods
of time. Because few seeds become seedlings, many tree
species often rely on high seed production to overcome me-
sic site conditions to ensure successful regeneration; of the
millions of seed produced, perhaps at least some will land
on moist microsites suitable for establishment. For dry xeric
forests, most of the successful regeneration occurs in those
wet years when soils are moist for a suitable time and solar
insulation does not kill developing leaves and stems. These
moist years are often called wave years, and the pulses of
regeneration that occur in these years results in even-aged
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patches. Projected climate change is likely to decrease the
frequency of these wave years, and on the driest sites, the
frequency of wave years may be so low that no regeneration
may occur, depending on the species. Planting on these
newly dry sites may also be ineffective because of the short
window of high soil moisture.

At the highest elevations, where the depth and duration
of snow cover often governs tree regeneration, warming
may enhance regeneration. Most years are moist enough for
regeneration at high elevations, but snow remains on sites
too long for successful regeneration in many years. With
warming temperatures, snow is likely to melt earlier, giving
more time for seedlings to survive and grow. Previous warm
wave years in upper subalpine ecosystems are often dated
by using seedling and sapling ages. Recent observations of
invasions of subalpine meadows and balds by subalpine fir,
alpine larch (Larix lyallii), and Engelmann spruce attest to a
high number of sequential warm years over the last decade,
which have facilitated regeneration in the high-mountain
landscape (Butler 1986). Therefore, climate warming is
expected to enhance regeneration at the subalpine and upper
subalpine forest ecosystems.

Future climates and their high variability may also affect
the ability of forest species to successfully germinate. Seed
chilling requirements may not be met during mild winters,
thereby reducing germination, and germination could be de-
layed until the driest parts of the growing season. Nitschke
and Innes (2008) found that the chilling requirements were
not being met for most low-elevation tree species in British
Columbia. Soil temperatures may be too high, causing
greater mortality of both germinants and established seed-
lings (Rochefort et al. 1994).

Climate change may also affect the dispersal properties
of the reproductive propagules. Rodents that disperse seeds
of ponderosa and western white pine, for example, may
migrate or decline because of warmer, drier habitat condi-
tions. Whitebark pine is dispersed by the Clark’s nutcracker
(Nucifraga columbiana), which might shift habitats because
of climate-mediated changes; nutcrackers usually nest in
high elevation areas with ample snowpack (Tomback 1998),
and these nesting habitats are predicted to decline in the
future (Westerling et al. 2006). Longer and drier summers
and falls also mean that seed dispersal may take place when
the ground and litter are the driest and least hospitable for
seed germination and establishment (Neilson et al. 2005).
Human- and ungulate-mediated seed dispersal of exotic
species could also be different in future climates; warmer,
drier climates might reduce human and ungulate use to
lower exotic seed dispersal. Changes in landscape spatial
heterogeneity may also influence mechanisms of nonwind
seed dispersal by shifting potential seed sources and chang-
ing patch sizes.

Growth and Mortality

Productivity potentially could increase in some
Northern Rockies forests with warming climate, resulting
in increased vigor and more resistance to stressors (Joyce
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1995). Worldwide, Lin et al. (2010) compute increases in
biomass of more than 12 percent (20 percent in forests) with
climate warming. However, Chmura et al. (2011) note that
even with increased productivity, most forests will undergo
reduced growth and survival as the climate interacts with the
entire tree species life cycle.

Climate can adversely influence growth and mortality
in many ways (Bugmann and Cramer 1998; Keane et al.
2001). Projected decreases in water availability may result
in shorter effective growing seasons and longer periods of
continuous drought in the drier Northern Rockies forests
(Williams et al. 2010). Longer drought might require
Northern Rockies conifers to close stomata longer to con-
serve the little water available. Some xeric conifers, such
as ponderosa pine and limber pine, have excellent stomatal
control and are able to remain closed for long periods of
time. Other conifers, such as Douglas-fir, have poor stomatal
control, and this may drive leaf water potentials to extreme-
ly low values, which might result in intercellular cavitation,
tissue damage, and perhaps plant mortality (Sala et al.
2005). The projected increased temperatures will increase
both maintenance and growth respiration, especially when
stomata are closed. Increased respiration will require ad-
ditional photosynthetic gains to counterbalance respiration
losses, thus demanding even more water in a drier future.

If photosynthetic production cannot exceed respiration de-
mands, then the plant becomes stressed, thereby increasing
the probability of mortality and susceptibility to insects and
disease.

In the most mesic and montane ecosystems, a warming
climate is likely to enhance growth and decrease mortality.
Wu et al. (2011) found increases in plant growth for many
forest and rangeland ecosystems with warming worldwide.
Earlier growing seasons with ample moisture, such as
that predicted for mesic montane forests in the Northern
Rockies, will probably lead to increased productivity and
greater growth. Although this increased biomass could result
in additional foliar material to increase canopy bulk density
and therefore result in higher crown fire potential, it could
also result in higher growth rates for timber production and
forage. This will be especially true in the higher mountain
environments where cold temperatures, not moisture, limit
tree growth. Longer, warmer growing seasons might result
in higher productivities and greater biomass. The increased
biomass will also increase competitive interactions between
species, thereby favoring the more shade-tolerant indi-
viduals in the absence of disturbance. However, increased
biomass could foster more-intense fires, and maybe
greater insect and disease outbreaks, such that the more
disturbance-tolerant species might ultimately inherit the
landscape.

Genetics Concerns

It is widely accepted that climate limits species distribu-
tions. Climate is also a major environmental factor affecting
plant phenotypes and a critical agent of natural selec-
tion, molding among-population genetic variation. Plant
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adaptations to local environments have often developed a
clinal or continuous response to abiotic and biotic factors
such as temperature, frost-free periods, precipitation, fire,
insects, and disease. More recently, ecotypic or a discontinu-
ous response to environmental gradients is being recognized
based on different soil or edaphic properties. The combina-
tion of clinal and ecotypic environmental gradients across
the landscape enhances or limits plant survival and long-
term persistence.

The hardiness of a plant is determined by its genetic
background. Ecological genetics is a field of study in-
vestigating the genetic architecture, phenotypic plasticity
(ability of an organism to change its phenotype in response
to changes in the environment), and adaptive capacity of a
species in the context of interactions among and between
plant populations and environmental gradients. Ecological
genetics and common garden studies are employed to study
individual species. Well-designed common garden studies
provide information on the adaptive strategy of a species
(e.g., generalist, intermediate, or specialist; table 6.1)
(Rehfeldt 1994). Processes that shape the genetic architec-
ture of a species include natural selection, migration, genetic
drift, and its mating system. Thus, the ability of plant popu-
lations to respond to climate change is influenced by the
underlying patterns of genetic variation.

Molecular markers can reveal significant genetic diver-
sity and divergence among populations associated with
variation among populations (table 6.1). Past historical
events affecting divergence among populations can be
shaped by a variety of factors. Examples of abiotic factors
are fire, glaciation (Hamrick 2004), and volcanic activity;
for instance, range shifts east of the Cascades indicated
ponderosa pine was replaced with lodgepole pine, and later
repopulated by ponderosa pine after the Pleistocene (Hansen
1942, 1947, 1949). Other factors include abiotic and biotic
seed dispersal agents (for whitebark pine, limber pine, and
ponderosa pine) (Lorenz and Sullivan 2009) and pollinator
history. Plants that are insect-pollinated or rely on animal-
dispersed seed are more vulnerable to climate change
because of the requirement for interaction with another
organism.
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Genetic diversity enables a species to adapt to changing
environments, colonize new areas, occupy new ecological
niches (USDA FS 2006), and produce substantial and robust
progeny that persist in the long term (Ledig and Kitzmiller
1992). The entire species does not adapt to environmen-
tal change over time, but populations within a species do.
Species and populations of plants most vulnerable to climate
change are rare species, genetic specialists, species with
limited phenotypic plasticity, species or populations with
low genetic variation, populations with low dispersal or
colonization potential, populations at the trailing edge of
climate change, populations at the upper elevational limit
of their distribution, and populations threatened by habitat
loss, fire, disease, or insects (Spittlehouse and Stewart 2004;
St. Clair and Howe 2011). The underlying assumption about
forest and rangeland species is that as climate continues to
change, populations will become poorly adapted to their
local climates, thus becoming stressed. But the ability of a
species to respond to environmental change is closely tied
to its adaptive strategy and the mechanisms that shape its
genetic structure; therefore, this assumption may be false.
Some species such as Douglas-fir, juniper (Juniperus spp.),
and sagebrush (Artemisia spp.) may show range expansion
in the future (Hansen and Phillips 2015).

Historical gene flow (seed and pollen movement) cre-
ates patterns of genetic differentiation that may allow some
populations to be more predisposed to respond to climate
change than others. Fragmentation is a critical issue for
plant populations because isolation and the occurrence of a
relatively few number of individuals can lead to inbreeding
and loss of genetic diversity (Broadhurst et al. 2008; Potter
et al. 2015). This field of study also informs research and
management of the adaptive capacity and vulnerability to
climate change (i.e., its direction and magnitude) of each
species. Gene flow from adjacent populations that are more
typical of future climates has the ability to increase the rate
of adaptation by introducing genetic variation that is pre-
adapted to warmer or drier climates (Aitken et al. 2008). A
practical application of this field of study facilitates evaluat-
ing options for responding to environmental gradients and
climate change, for example, choice of the appropriate

Table 6.1—Comparison of attributes characterizing a species’ adaptive strategy.?

Adaptive strategy

Attributes Specialist Generalist
Factor controlling phenotypic expression of adaptive traits Genotype Environment

. . . . . - Phenotypi
Mechanisms for accommodating environmental heterogeneity Genetic variation p[aesrt]i(c)izlflc
Range of environments where physiological processes function Small Large
optimally
Slope of clines for adaptive traits Steep Flat

Partitioning of genetic variation in adaptive traits

Largely within
populations

Largely among
populations

a Modified after Rehfeldt (1994).
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population or seed source to increase the likelihood of at-
taining a desired reforestation, restoration, or revegetation
outcome.

Most species may not be able to adapt quickly enough
to keep pace with projected migration rates of 328 to 3,280
feet per year with climate change (Davis 1989; Malcolm et
al. 2002). Davis and Shaw (2001) and Davis et al. (2005)
suggest plant adaptation may be a more important factor in
response to climate change due to the slow rates of plant
migration impeded by population fragmentation as a result
of land use patterns. Although Hamrick et al. (1992) and
Hamrick (2004) suggest that long-lived species with high
levels of genetic variation are well positioned for climate
change, Etterson and Shaw (2001), Jump and Pefiuelas
(2005), and Parmesan (2006) argue that the ability of forest
trees to adapt or migrate and follow climatic shifts may be
restricted by their long lifespans, long generation intervals,
and long juvenile phases.

Long-lived species often maintain high levels of genetic
variation and gene flow, which facilitates their ability to
evolve in response to changing climates (Hamrick 2004;
Hamrick et al. 1992). Whitebark pine is an example of a
long-lived species with high levels of genetic variation
(Mahalovich and Hipkins 2011) and extensive gene flow
(Richardson et al. 2002) attributed both to long-distance
seed caching by Clark’s nutcracker and an outcrossed mat-
ing system involving wind pollination (Richardson et al.
2002). Because plant populations are genetically adapted to
local climates, the climatic tolerance of individual popula-
tions is often considerably narrower than the tolerance of the
entire species.

Knowledge of the adaptation of Northern Rockies plant
species is well documented for conifers (Rehfeldt 1994) but
incomplete or lacking for other native plants. A species does
not necessarily have only one adaptive strategy, though most
do. Differences in adaptive strategy can be characterized by
differences in variety (e.g., P. ponderosa var. ponderosa or
Rocky Mountain ponderosa pine [P. ponderosa var. scopulo-
rum)), elevation, and geography. For example, P. ponderosa
var. ponderosa is characterized as having an intermediate
adaptive strategy; however, at high elevations (>5,000 feet),
ponderosa pine has a specialist adaptive strategy. Rocky
Mountain Douglas-fir (Pseudotsuga menziesii var. glauca)
is characterized as having a specialist adaptive strategy;
that is, its genetic variation is organized into numerous
local populations, finely tuned to site-specific gradients. At
higher elevations east of the Continental Divide, however,
Douglas-fir has a generalist adaptive strategy; its genetic
variation is organized into one or a few populations capable
of surviving, growing, and reproducing over a broad range
of environments (Rehfeldt 1989). Species possessing a gen-
eralist adaptive strategy are proposed to fare better than their
intermediate and specialist counterparts in changing climate.

Patterns of adaptive variation for other native plants
(e.g., shrubs, forbs, grasses, and sedges) are more complex,
being both clinal and ecotypic. These species differ in
lifeform (e.g., annual, biennial, and perennial) and ploidy
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level (number of copies of DNA, such as 4X, 6X, or 8X).
The base ploidy level is 2X, where one copy of DNA is in-
herited on both the maternal and paternal sides. Grasses are
hypothesized to be largely generalists and less vulnerable to
climate change; however, ecotypic variation can overlay the
generalist adaptive strategy. Forbs, which are largely insect-
pollinated, are more vulnerable to the changes in phenology
and longer growing seasons expected with climate change.

Soil Responses

Each soil in the Northern Rockies region has an inher-
ent ability to produce vegetation based on climate, parent
material, topography, soil biology, and soil development
(Armson 1977). Soil supports production of vegetation
through interactions of nutrient cycling, soil hydrology,
soil biology, physical support, and filtering (or buffering)
(Attiwill and Leeper 1987). The quality and quantity of soil
organic matter, the timing and amount of moisture, tem-
perature, and acidity may all be altered by climate change,
which will ultimately affect functional properties of soils
and perhaps productivity (Bonan 2008).

Climate change affects the growth, mortality, and
decomposition of vegetation, which in turn influence soil
biology (Waring and Running 1998). Warmer temperatures,
increased CO,, and longer growing season contribute to
higher vegetative growth. Warmer temperatures, increased
drought, and greater susceptibility to insects and disease
may lead to increased mortality. Although higher tem-
peratures will increase decomposition rates, the moisture
required for decomposition may increase or decrease, lead-
ing to variable changes in decomposition rates (Davidson
and Janssens 2006). Decomposition will increase with a
combination of warmer temperature and higher moisture,
whereas decomposition will decrease if summer droughts
extend later (Rustad et al. 2000). Increased fire frequency
and severity would generally reduce soil organic matter
across large landscapes (Dooley and Treseder 2012).

Higher air temperatures will directly increase soil tem-
perature. Increased vegetative cover would provide dense
shade, thus decreasing soil temperature, whereas decreased
vegetative cover would result in more heating at the soil sur-
face. Dry soil, which is expected to be more common during
future drought, would have wider temperature fluctuations
than wet soil, which is buffered by the high heat capacity of
water. In addition, if snow cover is lower but extreme cold
periods continue to occur, soils will have lower minimum
temperatures (Davidson and Janssens 2006).

The vulnerability of soils to future climate change is
summarized in table 6.2. Effects will differ greatly, depend-
ing on local soil characteristics, the magnitude and trend of
climate change, and vegetation response.

Stressors—Biotic and Abiotic Disturbances

A warming climate will rarely be the direct agent of
change for Northern Rockies tree species and communities.
Most of the changes in vegetation are likely to result from
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responses to climate change-induced disturbance or to some
combination of other climate-exacerbated stressors (Keane
et al. 2015a). Climate change has marginally to severely
altered disturbance regimes in the western United States
(Liu et al. 2011). As we consider past climate variability and
then add the projections in temperature and precipitation,
there may be significant changes occurring across Northern
Rockies forests because of a changing water balance and the
role of disturbances such as wildfires, insects, and diseases.
Whether it is invasive species (e.g., white pine blister rust;
causal agent: Cronartium ribicola), drought, uncharacteristic
wildfires, elevated native insect and disease levels, loss of
historically fire-adapted tree species, unusually high forest
densities compared to historical conditions, or some other
combination of disturbance agents that serves to stress trees
and forest ecosystems, recent research suggests that climate
change is likely to further exacerbate those stressors and
“stress complexes” (Iverson and McKenzie 2013). The fol-
lowing subsections present a short summary on four major
classes of stressors important in the region. More-detailed
summaries of disturbance responses and their interactions to
climate change are presented in Chapter 8 of this report.

Wildland Fire

Wildland fire is pervasive throughout Northern Rockies
forest ecosystems and was historically the dominant land-
scape disturbance in the region (Baker 2009; Barrows et
al. 1977; Wellner 1970). Fire exclusion since the 1920s has
disrupted annual occurrence, spatial extent, and cumulative
area burned by wildfires. Climate change impacts to fire
regimes are overlaid on a century of ecological changes to
forest vegetation and fuels; thus, observed differences be-
tween current fire patterns and historical ones are a product
of management legacies as well as anthropogenic changes to
climate.

Wildland fire regimes, defined by fire frequency, annual
area burned, severity, and pattern, are greatly influenced
by variability in landscape environmental conditions
including vegetation distribution, climate, weather, and
topography (McKenzie et al. 2011). Climate and fuels are
the two most important factors controlling patterns of fire
within forest ecosystems. Climate controls the frequency of
weather conditions that promote fire, whereas the amount
and arrangement of fuels influence fire intensity and
spread. These wildland fuels—the live and dead biomass
that burns in fires—Ilose moisture and become flammable
in the region’s typically warm and dry summers, during
which there are ample sources of ignition from lightning
strikes and humans. Therefore, the active fire season (period
conducive to active burning) is in the summer, typically
from late June through October, with shorter seasons at
higher elevation sites where snowpack can persist well into
July. Regionally, widespread fire years are correlated with
drought (Heyerdahl et al. 2008). At large spatial scales,
topography can influence the spatial pattern of fire spread.
For example, in dissected mountainous areas, topographic
features (e.g., barren slopes) can form barriers to fire spread
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(Grissino-Mayer et al. 2004), but where drainages are
aligned with prevailing winds, topography can facilitate the
spread of large fires (Sharples 2009).

Compositions and structures of forests in the Northern
Rockies region are strongly determined by fire history. In
general, fire regimes vary along environmental gradients,
with fire frequency decreasing and fire severity increas-
ing with elevation. For example, at the lowest and driest
elevations, where forests are dominated by ponderosa pine,
frequent surface fires historically consumed litter and dead
wood and killed seedlings and smaller trees. Adaptive
traits such as thick bark allowed mature ponderosa pines
to survive many repeated fires over time and tree densities
were kept low. Fire exclusion since the 1920s has increased
surface fuel loads, tree densities, and ladder fuels, especially
in low-elevation dry conifer forests (Schoennagel et al.
2004). As a result, fires at the lowest and driest elevations
may be larger and more intense, and may cause higher rates
of tree mortality, than historical fire. But in mid- and higher
elevation forests, where fires were historically infrequent
because of relatively cold, wet conditions, fire exclusion has
not affected the fire regimes (Romme and Despain 1989;
Schoennagel et al. 2004). However, earlier onset of snow-
melt, predicted to occur with changing regional climate,
will reduce fuel moisture during fire season, making mid- to
high-elevation forested systems flammable for longer peri-
ods of time (Miller et al. 2009). As these forested systems
are not fuel-limited, fire occurrence and extent are likely to
increase in the future (Littell et al. 2009, 2010; Westerling et
al. 20006).

Insect Outbreaks

Regional insect activity and outbreaks are highly
correlated with climate drivers, and potential climate
change-induced insect activity will be an important influ-
ence on future forest composition and structure. The
mountain pine beetle (Dendroctonus ponderosae) is an
integral component of forest ecosystem processes because
of its role in stand thinning and redistribution of resources
and nutrients important for tree regeneration. It is also
recognized as an aggressive and economically important
forest insect responsible for tree mortality across large areas
(Logan et al. 2003). Both bark beetle populations and their
host trees are being influenced by changing climate. Many
bark beetle life history traits that influence population suc-
cess are temperature-dependent (Bentz and Jonsson 2015),
and warming temperatures associated with climate change
have directly influenced bark beetle-caused tree mortality in
some areas of western North America (Safranyik et al. 2010;
Weed et al. 2015). Host tree distribution across the Northern
Rockies region, and tree vigor, which influences suscepti-
bility to bark beetle attack (Chapman et al. 2012; Hart et
al. 2013), will also be influenced as climate continues to
change. Future bark beetle-caused tree mortality will there-
fore depend not only on the spatial distribution of live host
trees and heterogeneity of future landscapes, as described in
this chapter, but also on the ability of beetle populations and
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their associates to adapt to changing conditions when exist-
ing phenotypic plasticity is surpassed.

Pathogens

Forest diseases are found in all forest ecosystems of
the Northern Rockies region. They are one of three major
disturbance groups that affect ecosystem development and
change, yet impacts of forest diseases on various resources
and services in the region are difficult to estimate. The
major groups of forest diseases in the region that affect
ecosystems and ecosystem services are fungi and rusts
(fungi that infect needles and causes damage and mortality,
the most important being white pine blister rust), dwarf
mistletoes (Arceuthobium spp.; a group of parasitic seed
plants that are widespread across the region and that mostly
cause reduced tree growth and productivity), root diseases (a
major cause of growth loss and mortality), needle casts and
blights (diseases that cause crown thinning and loss of lower
branches), and abiotic diseases (damage to trees resulting
from impacts of adverse environmental factors on tree
physiology or structure).

Effects of climate changes on forest diseases are difficult
to predict. Climate change can alter pathogens through
direct effects on the development and survival of the
pathogen, physiological changes in tree defenses, or indirect
effects on the abundance of natural enemies, mutualists, and
competitors (Ayres and Lombardero 2000). These dynamics
are not well captured by GCMs because the ecology and im-
pacts of pathogens are based on local site and environmental
conditions. Epidemics also depend on local conditions for
spread and infection to occur. Although models usually
generate mean climatic conditions, it is often the extremes
that have the greatest influence on pest conditions (Hepting
1963), and these are also not well represented by GCMs.
However, modeling efforts to date suggest that among the
major Northern Rockies diseases, root disease is projected
to cause the highest basal area loss as a percentage of total
basal area in the region. Projected losses from root diseases
ranged from zero percent on most national forests east of
the Continental Divide to 15—19 percent on westside forests
(Krist et al. 2014). Klopfenstein et al. (2009) used a subset
of GCMs to predict how the geographic distribution of the
climate envelope for Armillaria root rot (Armillaria solidi-
pes, formerly A. ostoyae) and Douglas-fir could change
in the interior northwestern United States. Their analysis
suggests that Douglas-fir will have a considerably smaller
geographic space that matches its current climate envelope
and that this space will shift, while only minor changes are
projected for A. solidipes. They suggest that areas where
Douglas-fir is maladapted could increase, which could
increase its susceptibility to Armillaria root rot. Climate-
mediated changes to forest tree diseases will be dictated
by disease and host responses to new climates, and their
interactions (Sturrock et al. 2010); the interactions among
biotic diseases, abiotic stressors, and host status will drive
future pathogen outbreaks. Predicted increases in tempera-
ture and drought will probably serve to increase pathogen
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populations in the future (Chakraborty et al. 2008). The
role of pathogens as important disturbance agents is likely
to increase in the future because they are able to migrate to
new environments at a faster rate than trees.

Drought

Soil type and depth, aspect, and elevation all contribute
to effective moisture availability for tree establishment
and growth, producing patterns of forests in the Northern
Rockies region. Additionally, the impact of stand condition
on overall water balance and the effect of site and soil con-
ditions on moisture availability are important to consider.
The Natural Resources Conservation Service (NRCS) and
the Natural Resource Information System of the Montana
State Library have mapped the relative effective annual
precipitation (REAP) for the State of Montana (Montana
State Library and NRCS n.d.). REAP is an indicator of
the amount of moisture available at a location, taking into
account precipitation, slope and aspect, and soil properties.
For example, two sites that receive the same amount of
precipitation may have different effective precipitation due
to unique soil and landform factors at each site. Depending
on the geographic location within Montana and degree of
slope, the actual precipitation for southerly aspects may be
adjusted downward while northerly aspects may be adjusted
upward.

Future climate change models indicate that the Northern
Rockies region will have longer, drier summers and warmer
conditions. Pioneer (seral) species such as ponderosa pine
have the unique ability to establish on bare soil surfaces
where high surface temperatures (>149 °F) exclude other
species. One of the adaptations of these seral species is a
capability for deep rooting, which allows the tree to find
an adequate water supply and avoid extensive competi-
tion with shallow- and fibrous-rooted grasses and forbs.

As the shade from these species limits sun-loving grasses
and forbs, shade-tolerant tree species establish and grow.
Grass and forb species usually have a shallower rooting
characteristic that allows them to gather soil water from the
nutrient-rich soil surface; in contrast, the overall rooting
structure of shade-tolerant tree species in essence becomes
much more competitive as succession progresses. In addi-
tion, the overall leaf surface area that develops over time
on a given site increases. Lands dominated by grasses/
forbs or shrubs usually develop a maximum total leaf areca
of about 3.3 square feet per square foot of soil surface area.
Forests can develop leaf areas in excess of 6.5 square feet
per square foot of soil surface area. With increasing leaf area
comes increased water transpiration, which can deplete the
soil water storage capacity needed to keep trees hydrated
throughout the summer. The additional canopy interception
of rain and snow in dense forests, which directly evaporates
into the atmosphere, further compounds this effect, reducing
soil water recharge. The result is a water-stressed forest that
not only becomes more susceptible to insects and disease,
but also more prone to supporting severe wildfires because
live fuel moisture is relatively low.
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Climate Change Assessments

This section contains the information that was used to
assess vulnerability for all tree species, vegetation types,
and resources of concern. There are four subsections for
each item (e.g., tree species) to detail the (1) ecology, (2)
disturbance interactions, (3) current and historical condi-
tions, and (4) potential climate change responses. The
first subsection presents important ecological information
needed to understand how a species, type, or resource of
concern might respond to future changes in climates, such
as its drought- and shade-tolerance. The subsection on dis-
turbance interactions contains information on those agents
that affect the species, type, or concern, and important
projections of how those disturbance agents might change
in the future. Historical and current conditions are included
as a subsection because any climate change response is
greatly dependent on current status and past actions. Last,
the anticipated climate change responses for the species,
types, and concerns are included in perhaps the most im-
portant subsection. This material was ultimately the basis
for evaluations of vulnerability or development of potential
adaptation actions.

Most of the material in this section was taken from the
literature, but substantial amounts of anecdotal and observa-
tional information were also included for context. However,
due to imperfect knowledge across the evaluated entities
and the high uncertainty in climate predictions and ecosys-
tem responses, we admit that many of our projected climate
change responses and resultant vulnerability assessments are
based on our own professional experience. Moreover, some
climate change response material may appear uneven across
species, types, and concerns because detailed information is
not available for all of them; for example, more information
is available for timber tree species than nontimber species.

Tree Species

Most of the background information used in this sub-
section was synthesized from three primary sources. The
Bollenbacher (2012) report presents characteristics of the
major tree species of the Northern Rockies region, adapted
from the autecological synthesis developed by Minore
(1979). The commonly used silviculture reference edited
by Burns and Honkala (1990) was used throughout, and the
climate change report compiled by Devine et al. (2012) for
the Pacific Northwest was also used for genetics and auteco-
logical information. Table 6.3 provides a general summary
of ecological and genetic characteristics by tree species
that will be important under future climate change. In this
subsection, we attempted to integrate the genetic, morpho-
logical, ecological, and disturbance response characteristics
summarized in table 6.3 to predict how a tree species would
respond under future climate warming. We also integrated
any material available in the literature to aid and support our
predictions.
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Discussion on climate change responses was synthesized
from information in the literature and the MC2 modeling
results (Appendix 6A) to evaluate the effects of climate
change on important species, vegetation types, and resource
concerns. This material forms the foundation for our vulner-
ability assessments and the adaptation strategies and tactics.
Many of these climate change responses are based on the
species characteristics and current ecosystem condition
presented in this section.

The most astonishing finding in this section is that the
literature is inconsistent on the response of tree species to
future climate change. Results from SDM modeling are
often, but not always, different from most other sources that
include gap modeling, mechanistic ecosystem simulation,
and field data summaries. As a result, we put less emphasis
on the SDM results in our vulnerability assessment evalua-
tions in Appendix 6B. Another finding is that the amount of
climate change really matters. Most climate change studies
predict few species changes after moderate warming (e.g.,
the B1, B2, A1B, and RCP 4.5 scenarios), but major species
shifts under the most extreme emissions scenarios (e.g., the
Al and RCP 8.5 scenarios). Third, the timeframe used in the
climate change study is also important. Management time-
frames of 10 to 50 years are not long enough to effectively
evaluate changes in fire, beetles, and tree growth. Ecosystem
response to disturbance takes time, often two to five times
the disturbance return interval. Last, climate change study
results and subsequent ecosystem responses depend tremen-
dously on the choice of GCMs used to simulate and quantify
climate change. Some GCMs predict minor warming for
the Northern Rockies region, while others predict major
changes.

Based on a thorough review of the literature, we propose
three basic modes of response to climate change for the ma-
jor tree species of the region: modification, contraction, and
expansion. First, the species could increase or decrease in
productivity in situ within its current range due to increasing
temperatures and adequate precipitation (acclimatization);
for example, the majority of information seems to support
the inference that most lands in the Northern Rockies region
will increase in productivity (Aston 2010). Next, the species
could die in those parts of its range where conditions will
change enough to become inhospitable to that species (Allen
et al. 2010) (contraction). Last, the species could migrate to
areas that are more conducive to establishment and growth
(Johnstone and Chapin 2003) (expansion). Any species can
have multiple modes of response to climate change, and most
species will respond to future climates via all three modes.

Application of these three modes to determine future spe-
cies dynamics demands a thorough integration of variability
and scale. For example, the ebb and flow of species migra-
tion demands a relatively long temporal scope to properly
evaluate species range shifts (Prentice et al. 1991). A tree
species could become established in a “new” environment
made suitable by climate change, such as subalpine tree ex-
pansion into snow glades, but the great variability in climate
may result in 1 year of drought or high snow that kills all
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established seedlings. Conversely, 1 year of drought could
kill many individuals in the grassland-woodland ecotone,
but several wet years in a row might facilitate reestablish-
ment of tree species into the high mortality zone. Further,
the rate of climate change shifts will be governed by distur-
bance, not competition, so disturbance adaptations will be
more important than climatic niches. Management actions,
such as fire exclusion, may facilitate species expansion into
areas that will eventually burn, causing extensive mortality.

All of the climate change response evaluations in this
chapter have a high level of uncertainty; they are essentially
best guesses from a wide variety of resource specialists and
a review of the literature. The following information may
provide a starting place, a possible prioritization, or as-
sistance in addressing climate change in forest plans, but it
is in no way accurate enough to provide valid predictions of
what will happen in the future.

Limber Pine
Autecology

Limber pine (Pinus flexilis) is a shade-intolerant, early
seral to pioneer species in the Northern Rockies (Steele
1990). Its seeds are dispersed by rodents, but more impor-
tantly, by a bird (Clark’s nutcracker) that will cache limber
pine seed anywhere there is microsite pattern that it uses
for finding the seed (Lanner 1980; Lanner and Vander Wall
1980). Limber pine has difficulty in competing with other
encroaching species on more productive mesic sites and is
often succeeded by Douglas-fir and subalpine fir. There is
often little to no reproduction once tree densities are below
10 trees per acre, mostly because of the lack of an effective
pollination cloud, and those seeds that are produced have
increased likelihood of inbreeding. Moreover, a minimum
of 10 cone-bearing trees per acre is needed for dispersal by
Clark’s nutcracker (McKinney et al. 2009). This tree species
is very slow growing but long-lived, and some of the oldest
trees in the region are limber pine.

Limber pine is a puzzling species in the context of
ecosystem land management. It occupies xeric sites across
a wide range of elevations (2,600 to 8,900 feet in elevation)
in the Northern Rockies region that are often marginal for
timber production (Jackson et al. 2010). Historically, it was
often found on the margins between grasslands and forest
ecosystems at the lower treeline on fire refugia (Steele
1990). Because limber pine is easily killed by fire, the spe-
cies was mostly found in fire-protected cove sites where fire
was rare and of low severity, such as rocky outcrops, barren
areas, and moist north slopes (Steele 1990). In these lower
treeline areas, limber pine is often associated with Douglas-
fir, Rocky Mountain ponderosa pine, and quaking aspen
(Populus tremuloides). On upland montane sites, it can
often be found on limestone substrates and droughty soils,
but in these areas it is associated with many other Northern
Rockies conifers, especially lodgepole pine, subalpine fir,
and Engelmann spruce (Langor 2007; Steele 1990). Limber
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pine seedlings are poor competitors with grass, but do well
on rocky substrates and in shrub environments.

Limber pine is very tolerant of drought and can establish
and grow in some of the most arid environments in the
Northern Rockies region (Steele 1990) (table 6.3). It is
associated with both ectomycorrhizae and arbuscular my-
corrhizae that facilitate its ability to exist in extremely dry
environments. Seedlings are very drought tolerant but have
a low tolerance to competition, especially from herbaceous
plants.

Genetically, limber pine has high outcrossing rates with
average genetic diversity and average population differentia-
tion (Devine et al. 2012). The fundamental and realized
niche for limber pine is very broad in the region, indicating
that this species has a generalist adaptive strategy with wide
phenotypic plasticity.

Disturbance Interactions

As mentioned, the thin bark and low foliage of limber
pine make the species highly susceptible to damage from
wildland fire. Limber pine is also highly susceptible to white
pine blister rust, and many communities suffer high mortal-
ity when the disease infects trees in a new region (Smith
et al. 2013). Limber pine also facilitates the expansion
of currant (Ribes spp.; an alternate host for the pathogen
Cronartium ribicola) into traditional grasslands (Baumeister
and Callaway 2006), thus increasing rust infections and
mortality.

Other insects and pathogens are also impacting limber
pine, but at a severity much lower than C. ribicola. Some
researchers have detected mortality from mountain pine
beetle in parts of the limber pine range (Jackson et al. 2010).
Others have noted that limber pine stands on mesic sites
may have severe dwarf mistletoe infections that could result
in mortality levels similar to those observed from white pine
blister rust. Porcupine (Erethizon dorsatum) damage is also
prevalent east of the Continental Divide.

Historical and Current Conditions

With fire exclusion, limber pine has expanded its range
from fire-protected cove sites into areas where it was histori-
cally restricted by frequent fires (Arno and Gruell 1983;
Brown and Schoettle 2008). As a result of the diminished
fire activity and active nutcracker caching, limber pine has
expanded into grass and shrub rangelands, and this expan-
sion has also allowed other species to inhabit historically
nonforest areas (Jackson et al. 2010). Evidence suggests
that limber pine can facilitate the establishment of other
forest species, especially Douglas-fir, in rangeland settings
(Baumeister and Callaway 2006). As a result, limber pine
in the Northern Rockies region is currently occupying
areas that were traditionally grasslands, and it is difficult to
determine if this is inside or outside the range of variability
of this ecosystem.

Ironically, the newly established limber pine forests
throughout the Northern Rockies region are undergoing
dramatic declines due to white pine blister rust, mountain
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pine beetle, and wind-caused red belt (Jackson et al. 2010;
Langor 2007; Taylor and Sturdevant 1998). Increasing

fires are also burning some of the stands that have become
established since 1910. There is some white pine blister rust
resistance in the species, but it is low, perhaps lower than 1
in 100 individuals (Steele 1990).

Climate Change Responses

Some anticipate that warming temperatures on the east
side of the region, along with increasing but more-variable
precipitation, especially during the growing season, and
waning snowpack will result in increased growth in many
limber pine communities (Aston 2010). Increases in vigor
are usually accompanied by larger cone crops, higher seed
viability, greater number of seeds per cone, wider seed
dispersal, and greater resistance to disease. Increased seed
dispersal includes denser caching by birds and mammals,
and probably more distant caching by Clark’s nutcracker.
Increases in vigor might also extend to competitors of
limber pine, so there could be increased competition from
wind-dispersed conifers, especially on the more mesic por-
tions of the limber pine range.

Warm temperatures, even with increased precipitation,
could also result in drier conditions, especially for seed
germination and seedling growth. Even if more seeds are
cached by mammals and birds, the subsequent establish-
ment of seedlings from the unclaimed caches might be
low because of longer drought seasons and hotter ground
temperatures. Any dispersal of limber pine seed to new
areas, especially nonforested stands, might have limited
regeneration success because of the lack of ectomycorrhizal
associations and increased competition from grasses and
dense shrubs (Coop and Schoettle 2009).

Disturbance interactions with warming climates are
likely to be important to future limber pine dynamics.
Increasing fire frequency and intensity may result in the
burning of more limber pine stands, causing higher mortal-
ity (Coop and Schoettle 2009). Increased fire may stem the
encroachment of limber pine into grasslands in areas where
grazing is low. Warmer, drier conditions may also reduce
blister rust infection by disrupting the blister rust cycle, es-
pecially during the late summer when Ribes species-to-pine
infection occurs, and there may be fewer wave years where
temperature and humidity are optimal for pine infection
by white pine blister rust. Where precipitation is projected
to increase, such as in the eastern portions of the Northern
Rockies region, there may be higher rates of blister rust and
dwarf mistletoe infection, which may cause higher limber
pine mortality. Continued fire exclusion could enhance es-
tablishment of currant under mature limber pines and result
in even greater white pine blister rust infection and mortal-
ity. Warmer temperatures also favor expansion of alternate
host species such as currant, lousewort (Pedicularis spp.)
and Indian paintbrush (Castilleja spp.) (Keane et al. 2015a).

Limber pine has an intermediate genetic adaptive strategy
under changing climates largely driven by timing of pollen
cloud dispersal (elevational effect) and seed dispersal by
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birds (Feldman et al. 1999). The species is highly adapted
to populating the increasing burned areas projected for the
future because of mammal- and corvid-mediated dispersal
(Lanner and Vander Wall 1980). If future fires are larger
and more severe, there may be less competition from other
competing conifers, especially in the eastern portions of the
Northern Rockies region along the timber-grassland eco-
tone. Limber pine has moderate genetic variation (capacity)
in blister rust resistance, but major gene resistance to blister
rust has not been identified in several studies of interior
populations. There is probably little to no opportunity to
hybridize with western white pine due to non-overlapping
species distributions, and it will probably not hybridize with
whitebark pine because the two species overlap only on
limestone substrates. There is a high risk of loss of disjunct
and isolated populations due to genetic drift, ineffective pol-
len cloud, and limited substrate availability.

Given all available information, limber pine responses to
future climates may be minor and governed mostly by wild-
land fire and white pine blister rust. If fires increase, limber
pine forests, some of which are already declining from
rust, will suffer major declines, especially where they have
encroached as a result of fire exclusion. Given its minor role
in the Northern Rockies region prior to European settlement,
we consider this species to be at most moderately vulnerable
to climate change based on its high tolerance to drought
and ability to populate severe environments, but high sus-
ceptibility to the introduced white pine blister rust and fire
damage may put this species in peril.

Ponderosa Pine
Autecology

Ponderosa pine (Pinus ponderosa) shows distinct geo-
graphic variation over its range. The ponderosa variety (P.
ponderosa var. ponderosa) ranges from the Fraser River
drainage of southern British Columbia south through
Washington and Oregon and into northern California (Oliver
and Ryker 1990). In the Northern Rockies, it extends from
the Canadian border to the central part of Montana on the
west side of the Continental Divide. Rocky Mountain pon-
derosa pine (P. ponderosa var. scopulorum) extends east of
the Continental Divide to North Dakota and South Dakota
and south into Wyoming and farther. Within the wide range
of both ponderosa pine variants, it is absent from several ar-
eas, including a large portion of southwestern Montana. This
may be due to the lack of rainfall in the summer months,
which prevents establishment except at higher elevations;
however, it is also limited by the shorter growing season at
these elevations.

In most of western Montana and Idaho, the upper
elevational limit of the ponderosa variety is around 4,900
feet, depending on latitude (Pfister et al. 1977). Moisture
is the factor most often limiting growth, especially in the
summer. Seasonal rainfall deficiency is evident from July
and August precipitation (Fowells and Kirk 1945; Tarrant
1953). The distribution of ponderosa pine on drier sites is
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closely related to supply of available soil moisture, which is
closely related to soil texture and depth. Low temperatures,
however, may dictate the success of ponderosa pine regen-
eration; seedlings of the species are highly susceptible to
frost damage and the occurrence of frosts often excludes the
pine from low valley settings, especially in frost pockets and
cold air drainages (Shearer and Schmidt 1970).

Ponderosa pine is a shade-intolerant, drought-adapted
species of the low-elevation dry forests of the Northern
Rockies (Minore 1979) (table 6.3). It can be a climax spe-
cies at the lower elevational limits of Northern Rockies
coniferous forests, or a seral species in the higher elevation
mesic forests, especially the Pacific variety. In dry climax
forests, there is generally a mosaic of small even-aged
groups. As a seral species, it is often associated with
Douglas-fir, lodgepole pine, grand fir, and, in the north-
western Northern Rockies, western larch. Ponderosa pine is
mostly intolerant of shade, but it is generally more tolerant
than western larch and less tolerant than grand fir and west-
ern white pine. Although it reaches its greatest site indices
on the mesic grand fir, western redcedar, and western
hemlock sites (Cooper et al. 1991), it is rapidly replaced by
a suite of more shade-tolerant competitors.

Ponderosa pine is a “drought avoider,” meaning it toler-
ates dry soil conditions by efficiently closing stomata to
avoid water loss and xylem cavitation and stay alive during
deep droughts (Sala et al. 2005) (table 6.3). This allows the
species to tolerate intense drought better than its associates,
specifically Douglas-fir, which is a “drought tolerator”
and able to obtain water at lower moisture conditions.
Although drought tolerators may be able to obtain water
at lower moisture conditions, they may attempt to draw
groundwater at such low soil water potentials that they ex-
perience extreme xylem cavitation, which may cause death.
Ponderosa pine has been associated with several species of
ectomycorrhizae, giving it a high capacity to survive in dry
environments.

Cone crop periodicity varies greatly with ponderosa
pine; observations indicate it is a poor seeder west of the
Continental Divide and a fair seeder east of the divide.
Throughout the region, natural regeneration is sporadic; it is
best when there is a heavy seed crop followed by favorable
weather during the next growing season (Heidmann 1983;
Shearer and Schmidt 1970). Potter et al. (2015) performed
molecular work that indicates that Rocky Mountain ponder-
osa pine is one of the most inbred conifers in the Northern
Rockies, and its vulnerability could be further compromised
with limited gene flow between populations. With cone crop
periodicity or masting events that occur only every 7 to
10 years, increasing natural regeneration problems may be
developing on the east side of the Continental Divide. Soil
texture, plant competition, and seedbed conditions have the
greatest effect on seedling survival. Moisture stress reduces
seed germination and limits seedling survival and growth.
Competing vegetation deters seedlings. As mentioned,
young seedlings (<36 days old) are susceptible to cold night
temperatures and deep frosts, and occasionally the pine trees
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suffer winter desiccation in drying winds. Older seedlings
(>110 days) can often withstand higher temperatures than
Douglas-fir, grand fir, and Engelmann spruce, making it
likely they will be more successful under future climates.

Ponderosa pine has a moderate potential for outcross-
ing with a high outcrossing rate. It has average genetic
variation, but is weakly differentiated geographically.
Although it has a strong population differentiation, it may be
considered to be intermediate in adaptive strategy because
both individuals and populations may be suited to diverse
environments. There are steep clines (ecotypes or forms of
species that exhibit gradual phenotypic and genetic differ-
ences over a geographic area as a result of environmental
heterogeneity) in elevation, but gentle clines in latitude and
longitude. There is high genetic variation between eastside
and westside ponderosa pine in growth, survival, needle
length, seasonal pattern of root growth, and ability to germi-
nate under moisture stress (Oliver and Ryker 1990).

Disturbance Interactions

Fires have a profound effect on ponderosa pine where
competing tree species are considerably less fire tolerant; this
allows ponderosa pine to maintain dominance over large ar-
eas (Arno 1988; Steele et al. 1986). Fires historically allowed
ponderosa pine to maintain its dominance across most of the
low elevation savannas by killing competitors. Ponderosa
pine has a great capacity to survive fire, better than nearly all
of its competitors (Ryan and Reinhardt 1988).

There are about 108 species of insects that attack west-
side ponderosa pine and over 59 species that attack eastside
ponderosa pine. The most damaging of the tree-killing
insects are several species of Dendroctonus (Oliver and
Ryker 1990). Among bark beetles, Ips species are second in
destructiveness only to Dendroctonus. Ips are present natu-
rally in all stands, where they usually breed in slash. Dwarf
mistletoe is the most widespread disease on ponderosa pine
but is rarely fatal in the region. Western pine shoot borer
(Eucosma sonomana) is also a concern in the future.

Historical and Current Conditions

Ponderosa pine forests have been undergoing a severe
decline due to the combination of logging and fire exclu-
sion. Large pine trees in open pine savannas were harvested
from nearly all but the most remote, inaccessible, or pro-
tected areas in the Northern Rockies region. Wildland fires
have been excluded from remaining pine forests, causing
advanced succession that was most rapid in the mesic habi-
tat types (Arno 1988; Gruell et al. 1982). This has resulted
in dense forests with overstories of stressed ponderosa pine
and dense understories of its shade-tolerant competitors,
most commonly Douglas-fir. There are often buildups of
duff and litter, and an atypical accumulation of down dead
woody fuels on the soil surface. The dense crowns, coupled
with high surface fuel loadings, ensure that when these
forests are burned by wildfires, the damage from the fire will
be severe with high tree mortality, deep soil heating, high
fuel consumption, and abundant smoke (Keane et al. 2002).
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Climate Change Responses

We expect ponderosa pine in the Northern Rockies
region to handle increasing temperatures and deeper,
longer droughts with only moderate difficulty. Its ability
as a “drought avoider” to close stomata when soil water
potential is low makes it the only forest species besides
juniper to maintain its presence in many low elevation set-
tings (Stout and Sala 2003). Morales et al. (2015) projected
an 11-percent increase in the range of ponderosa pine in the
western United States, and Nitschke and Innes (2008), using
a gap modeling approach, projected the replacement of dry
Douglas-fir dominated communities of British Columbia
with ponderosa pine. Hansen et al. (2001) projected an ex-
pansion of ponderosa pine across the western United States
and specifically in the Pacific Northwest, when most other
tree species ranges were retracting in area. Rocky Mountain
ponderosa pine is more intermediate in adaptive strategy
than the ponderosa variety; it therefore has a high pheno-
typic plasticity and is better adapted to drought (table 6.3).

However, declining precipitation and variable spatial and
temporal rainfall patterns may cause declines in ponderosa
pine regeneration and range contractions, except in the
eastern portions of the Northern Rockies region, where
precipitation is expected to increase. Crimmins et al. (2011)
estimated that ponderosa pine environments may rise more
than 2,300 feet in elevation by 2050 in its range. Similarly,
Gray and Hamann (2013) estimated ponderosa pine might
move more than 1,600 feet northward and almost 1,000
feet higher in elevation in the Northern Rockies by 2050.
However, Franklin et al. (1991) projected future forests of
ponderosa pine will cover about a third of its current range
in landscapes of the eastern Cascades, and Bell et al. (2014)
projected losses of more than 60 percent of its range by
2090.

Increases in mountain pine beetle outbreaks, advancing
competition resulting from fire exclusion, western pine
shoot borer occurrence, and increases in fire severity and
intensity will dictate the future of ponderosa pine in the
Northern Rockies. If fires are too frequent, established
regeneration will never grow above the lethal scorch
height, and mature individuals will not become established.
Increasing fire severity and occurrence could also eliminate
many of the Northern Rockies relict ponderosa pine trees
that provide the critical seed sources for populating future
burns.

Douglas-fir
Autecology

Douglas-fir (Pseudotsuga menziesii) has been a major
component of forests of western North American since
the mid-Pleistocene era (Hermann and Lavender 1990).
Only Rocky Mountain Douglas-fir (P. menziesii var.
glauca) is found in the Northern Rockies. The range of
this variety extends from central British Columbia through
the Rocky Mountains into central Mexico. The range is
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fairly continuous in northern Idaho, western Montana, and
northwestern Wyoming, with several outlying areas in east-
central Montana and Wyoming. In the Northern Rockies,
Douglas-fir grows in areas with maritime influence and
mild climate in all seasons except a dry period in July and
August. In the central Rocky Mountains, the winters are
long and severe, and summers are hot and in some parts
very dry. West of the Continental Divide in the region, the
rainfall may be evenly divided between winter and summer.
The altitudinal distribution of Douglas-fir increases from
north to south, due to the effect of climate on the distribu-
tion. The limiting factors are temperature in the northern
part of the range and moisture to the south. Thus, Douglas-
fir prefers southerly slopes in the northern part of its range,
and northerly exposures in the southern part of its range
(Pfister et al. 1977).

Douglas-fir in the Northern Rockies grows in pure
stands on dry, cold sites, in both an even- and uneven-aged
condition (Hermann and Lavender 1990). On other sites,
the associated species are dependent on the climate, and by
proxy, elevation and region. Montane low-elevation mesic
Douglas-fir is often associated with western larch, western
white pine, grand fir, western redcedar, and western hem-
lock, whereas on low-elevation xeric sites, Douglas-fir is
associated with ponderosa pine, juniper, and quaking aspen.
At upper elevational limits, the species is often found with
lodgepole pine, subalpine fir, and Engelmann spruce. In rare
cases it is found at the highest elevations associated with
mountain hemlock (Tsuga mertensiana), whitebark pine,
and alpine larch. Most of the Northern Rockies Douglas-fir
forests are found on droughty sites, and the species is often
associated with ponderosa pine; Douglas-fir is often the
primary climax species whenever it is found with ponderosa
pine (Keane 1985; Ryker and Losensky 1983; Steele and
Geier-Hayers 1989). Again, proportion of other species
growing with Douglas-fir varies widely depending on
aspect, elevation, soil type, and history, particularly fire his-
tory, of the area.

Regeneration is most successful where Douglas-fir is
seral, especially in the area of strong maritime influence in
northern Idaho and western Montana, where it is associated
with more montane species (e.g., grand fir, western redce-
dar, and western larch). Regeneration is poor where it has
attained climax status in the cool, dry habitats (Ryker and
Losensky 1983). Seedling growth the first year is relatively
slow, limited generally by moisture, which triggers initiation
of dormancy in midsummer. Competing vegetation may pro-
mote the establishment of a variety of seedlings by reducing
temperature stress, but may inhibit seedling growth by com-
peting strongly for moisture; this is most pronounced in the
southern portion of the range. In the Rocky Mountains, it is
a seral species in moist habitats and climax in the warmer,
drier areas of its range.

In the interior portion of its Northern Rockies range,
Douglas-fir ranks intermediate in shade tolerance, being
more tolerant than western larch, ponderosa pine, lodgepole
pine, and aspen (table 6.3). Old-growth Douglas-fir shows a
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wide range of age classes, indicating it became established
over long periods after major fires. It is gradually replaced
by more tolerant western hemlock, western redcedar, and
true fir on mesic montane sites. Douglas-fir tolerates drought
better than nearly all of its competitors except for ponderosa
pine. The species is a “drought tolerator” in that it keeps sto-
mata open to extract soil water at extremely low soil water
potentials, thereby subjecting it to potential xylem cavitation
and potential death (Sala et al. 2005; Stout and Sala 2003).
The species exhibits a great deal of genetic differen-
tiation, which is strongly associated with geographic or
topographic features (Rehfeldt 1978). The pattern of genetic
variation in growth and phenological traits among clines has
been observed along north-south, east-west, and elevational
transects. There is evidence of low genetic variation within
local regions. For example, in southern Oregon, seed col-
lected on the more xeric southerly aspects grew slower,
set bud earlier, and had larger roots compared to seedlings
grown from north-facing slopes. Seedlings from seed
sources on southerly aspects have adaptive characteristics
for a shorter growing season and drier soils and may survive
under drought stress better than seedlings from seed sources
on northerly aspects.

Disturbance Interactions

Douglas-fir has a great capacity to survive fire because of
its thick corky bark and its deep main roots. The capacity of
the species to form adventitious roots is another adaptation
that has enabled Douglas-fir to survive fire. However, young
Douglas-fir have thin bark and low height to live crown,
greatly increasing mortality from fire (Ryan and Reinhardt
1988). Ponderosa pine and western larch have better ability
to survive fire across all life stages, so on sites with frequent
fires where Douglas-fir is associated with other species, its
cover is usually kept low by fire (Agee 1991). However,
on cold, dry sites where the species is the indicated climax,
frequent fire may create Douglas-fir savannas, especially
east of the Continental Divide, such as in the high valleys of
southwestern Montana.

Douglas-fir is subject to serious damage from a va-
riety of agents that may increase under future climates
(Hermann and Lavender 1990). Western spruce budworm
(Choristoneura occidentalis) and Douglas-fir tussock moth
(Orgyia pseudotsugata) are the most important insects
affecting Douglas-fir. Both insects attack trees of all ages
periodically throughout the range of interior Douglas-fir,
often resulting in severe defoliation of stands. Many
Douglas-fir stands in the central Northern Rockies are cur-
rently devastated by budworm and beetle. The Douglas-fir
beetle (Dendroctonus pseudotsugae) is a destructive insect
pest in old-growth stands of coastal and interior Douglas-fir.
Armillaria and annosus (Heterobasidion annosum) root
diseases may intensify in infection rate and widen in dis-
tribution to cause high tree mortality. Annosus root disease
is particularly lethal in Douglas-fir (Hagle 2003). Of the
many heart rot fungi (>300 species) attacking Douglas-
fir, the most damaging and widespread is red ring rot
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(Porodaedalea pini Murrill, 1905). Knots and scars result-
ing from fire, lightning, and falling trees are the main paths
of infection. Losses from this heart rot far exceed those
from any other decay. Other important heart rot fungi in the
Northern Rockies are Fomitopsis officinalis, F. cajanderi,
and Phaeolus schweinitzii.

Historical and Current Conditions

Historical frequent wildland fires kept Douglas-fir from
becoming established on those dry sites where it was associ-
ated with ponderosa pine as frequent fires favored ponderosa
pine establishment. It often became established after long
interfire periods, such as during the Little Ice Age, and
easily attained dominance if fire frequency was decreased.
However, in the more montane portions of the Northern
Rockies range of the species, Douglas-fir was often one of
the major dominants, as it was a major competitor under
historical mixed-severity fire regimes (Arno et al. 2000).

Today, though, cumulative effects of the fire exclusion
era coupled with logging have allowed Douglas-fir to
become the dominant species across its range, especially
where it successionally replaced the historically dominant
ponderosa pine forests (Arno and Gruell 1983; Arno et
al. 2000; Gruell et al. 1982). As a result, we have seen an
expansion of Douglas-fir into areas where fire was frequent
historically, but also an increase in the density of the forests
where it is associated with more mesic species. This has
created large, contiguous areas where canopy fuels have in-
creased and become denser, and surface fuels that have been
converted from grass and shrubs to heavy down dead woody
fuels (Keane et al. 2002). These conditions predispose many
Douglas-fir forests to severe future fires. Moreover, these
dense stand conditions have contributed to decreased vigor
that predisposes the species to western spruce budworm and
Douglas-fir beetle outbreaks. Many Douglas-fir forests of
southwestern and central Montana are currently experienc-
ing high budworm and beetle mortality.

Climate Change Responses

Several studies suggest that Douglas-fir will respond pos-
itively with future changes in climate. Morales et al. (2015)
projected a 7-percent increase in the range of the species in
the western United States by 2060. Soulé¢ and Knapp (2013)
found almost doubled radial growth in Douglas-fir in the
western portions of the Northern Rockies in the latter half
of the 20t century, but they attributed some of this increase
to other factors such as CO, fertilization. Rose and Burton
(2009), using SDMs, projected that Douglas-fir forests in
British Columbia will nearly triple in area by 2080, while
Franklin et al. (1991) project no net loss of Douglas-fir habi-
tat in the future in the Pacific Northwest. Using a gap model,
Cumming and Burton (1996) also projected little change in
the Douglas-fir zone in British Columbia.

However, it is likely that myriad factors will contribute
to decline of Douglas-fir forests in some parts of the
Northern Rockies region in the future. USFS Northern
Region survey results from 2014 show significant increases
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in Douglas-fir 3-year seedling mortality (about 50 percent)
due to increasing drought, high temperatures, and severe
conditions, presumably related to climate change. In addi-
tion, Kemp (2015) found that natural postfire regeneration
of Douglas-fir on sites that burned in 2000 and 2007 varied
across gradients in elevation, aspect, and burn severity,

and findings indicated that Douglas-fir regeneration was
significantly reduced with increased heat loading (incom-
ing solar radiation derived from site latitude, aspect, and
slope). Specifically, the probability of successful Douglas-fir
regeneration was lower at lower elevation sites and on sites
with higher heat load (steep, southwest aspects). Likewise,
Douglas-fir abundance was lower on sites at lower eleva-
tions and with higher heat loads.

On dry lower elevation southerly aspects in the southern
Northern Rockies, ponderosa pine is likely to cope with
moisture deficits better than Douglas-fir because it does not
have the high potential for xylem cavitation (Stout and Sala
2003). In addition, Douglas-fir might not have the genetic
potential to rapidly migrate to more-suitable sites (Aitken et
al. 2008). More importantly, a suite of insects and diseases
is increasing in Northern Rockies Douglas-fir forests and
creating heavy mortality, especially in southwestern portions
of the region. The spruce budworm is killing many Douglas-
fir stands in southwestern Montana, while the Douglas-fir
bark beetle is attacking stands in other parts of the Northern
Region. Nitschke and Innes (2008) predict major losses of
Douglas-fir from parts of British Columbia because of hot,
dry conditions, while Shafer et al. (2001) predict major tran-
sitions in Douglas-fir in most of the U.S. Pacific Northwest,
and raise some major concerns that the climate might be too
warm to meet the chilling requirements of Douglas-fir seed.
Using SDM approaches, Gray and Hamann (2013) projected
that Douglas-fir will migrate more than 1,300 feet north and
560 feet upwards in elevation by 2050, and Bell et al. (2014)
projected losses of more than 40 percent of its range in the
Northern Rockies by 2090.

Increases in wildland fires, coupled with adverse effects
of the fire exclusion era in Northern Rockies forests, could
also present some problems for Douglas-fir. Increasing fire
danger in Douglas-fir stands with high canopy and surface
fuels may promote wildland fires that kill the majority
of Douglas-fir, even the most mature individuals. If fires
increase in the future, regardless of fire suppression efforts,
they may be so frequent that Douglas-fir seedlings cannot
become established and grow to maturity.

Douglas-fir might be one of the Northern Rockies tree
species most limited in range expansion because of its
limited genetic diversity and structure (St. Clair and Howe
2007). The species has a specialist genetic adaptive strategy
at low-to-mid elevations and a more generalist strategy
at higher elevations. With warming temperatures and a
possible decrease in summer moisture conditions, Rocky
Mountain Douglas-fir may contract from the driest portions
of its range. Current natural regeneration failures may be
exacerbated by reduced seed sources owing to large wild-
fires and hot and dry microclimate conditions, especially
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on southerly exposures at lower elevations. On moist sites
(mixed mesic forest), mortality from root disease may in-
crease because of increasing moisture stress.

Western Larch
Autecology

Western larch (Larix occidentalis) grows in the Upper
Columbia River basin of northwestern Montana, and in
northern and west-central Idaho (Schmidt and Shearer
1990). It grows in the relatively moist-cool climatic zone.
Limiting factors to western larch are low temperatures at the
upper elevations, and lack of moisture at the lower extremes
(Habeck 1990). Western larch grows on a wide variety
of soils; most soils suitable for growth are deep and well
drained. It is commonly found on valley bottoms, benches,
and northeast-facing mountain slopes (Schmidt et al. 1976).

Western larch is adapted to extreme environmental
heterogeneity, from maritime climates in the west and north-
west to more continental climates, as westerly air masses
move across the Bitterroot and Cabinet Mountains (Rehfeldt
1982). At comparable elevations, the frost-free period in
western Montana is 30 days shorter than in northern Idaho,
and thus populations from western Montana are better
adapted genetically to short frost-free growing seasons as
compared to similar elevations in northern Idaho (Rehfeldt
1995a). Moreover, as elevation increases and frost-free
periods decrease, growth potential decreases. Early fall cold
snaps are a major temperature factor affecting seedling and
sapling survival, before resting buds have had an opportu-
nity to fully lignify (Rehfeldt 1995b). Drought is another
major climatic factor affecting mid-to-late season survival
(Schmidt and Shearer1995). It is most likely to affect seed-
lings under heavy shade because of the heavy moisture use
by the overstory and other competing vegetation. Zhang and
Marshall (1994) and Zhang et al. (1994) characterize west-
ern larch as having low water use efficiency, as compared to
other conifers in the Northern Rockies. Plants that have low
water use efficiency tend to be larger in stature and produce
more biomass, which may be trait-limiting in future warmer
and more arid or variable-precipitation climates. The lower
water use efficiency of western larch may explain its ab-
sence on xeric sites (Gower et al. 1995).

Cone and seed production in western larch is most
prolific at ages older than 30 to 50 years, with seed crops
occurring every 14 years in Idaho and every 10 years in
Montana (Owens 2008). Good cone crops may occur in suc-
cessive years if conditions are favorable (Owens and Molder
1979). Spring frosts often reduce pollen, cone, and seed
production in western larch, leading to sporadic seed years.
Cone production is higher in stands that have larger crowns,
such as stands that have been thinned (Shearer 1976).
Cooler, wetter springs favor foliar diseases such as larch
needle cast (Meria larisis); successive years of infection
lead to reductions in available cone crops. Cone maturation
follows elevation gradients; cones at lower elevations are
generally mature in mid-August and seed dispersal occurs
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into September. As such, seed may be available for dispersal
during the fire season.

Seed germinates best on seedbeds exposed by burning
or mechanical scarification (Antos and Shearer 1980;
Beaufait et al. 1977; Schmidt 1969; Shearer 1976).
Western larch seedlings survive poorly on undisturbed
litter, humus, or sod or with heavy root competition; seed-
lings germinated on duff do not often survive (Beaufait
et al. 1977). High solar irradiation is the most important
physical factor affecting seedling survival (Shearer 1976).
Southerly and west exposures are generally too severe for
western larch seedlings to establish, particularly in drier
sites at the lower elevational limits of its range. In the
middle and northern portion of its ranges, western larch
grows well on all exposures. Young seedlings grow fast on
desirable sites. Only lodgepole pine is similar to western
larch in seedling growth; Douglas-fir grows at about half
the rate, and spruce and subalpine fir at about one-quarter
the rate, of western larch. Site productivity has the most
effect on height growth on western larch sites (Shearer
1976).

Western larch is a long-lived early seral species. It is a
fast-growing species with tall, open crowns, making the
species easily able to outgrow all of its competitors on the
more mesic sites (Milner 1992). It is also the most shade-
intolerant conifer in the Northern Rockies (Minore 1979)
(table 6.3); it can tolerate partial shading only in the seed-
ling stage. Western larch is replaced through succession by
all other conifers except for ponderosa pine. Western larch
is moderately drought tolerant and can survive seasonal
drought, but performs poorly when droughts last more than
1 or 2 years. Douglas-fir is the most common associate, but
others include ponderosa pine on lower drier sites; western
hemlock, western redcedar, and western white pine on
moist sites; and Engelmann spruce, subalpine fir, lodgepole
pine, and mountain hemlock on cool, moist subalpine sites
(Schmidt and Shearer 1990). It has been associated with
mycorrhizal fungi in many portions of the region (Harvey
et al. 1978).

Western larch has average genetic diversity with a weak
population differentiation. Its low levels of differentiation
indicate that it is more a generalist than a specialist. The
species has a moderate outcrossing rate, and the patterns
of genetic variation are mostly dominated by latitude and
longitude. Populations need to be separated by 1,640 feet
in elevation before genetic differentiation is expected.

Disturbance Interactions

Wildland fire is essential to the maintenance of western
larch populations. Western larch depends on the open-
canopy high light environments, and mineral soil seedbeds
created by fire for successful, widespread regeneration
(Schmidt et al. 1976). Western larch has unique charac-
teristics that allow it to survive intense fire, including the
thickest bark (Ryan and Reinhardt 1988), high crowns with
high moisture contents, deep roots, and epicormic branch
production (Fiedler and Lloyd 1995; Harrington 2012;
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Schmidt and Shearer 1995; Schmidt et al. 1976). Western
larch is one of the few Northern Rockies tree species that
has adapted to survive mixed-severity to stand-replace-
ment fires (Hopkins et al. 2013; Marcoux et al. 2015). Tall
surviving western larch can produce copious seeds that are
wind dispersed across large burns to land on mineral soil
seedbeds and ensure continued western larch domination
(Stoehr 2000). However, if serotinous mature lodgepole
pine trees occur with western larch, regeneration may be
dominated by both species (e.g., Hopkins et al. 2013).
Because western larch grows quicker and taller, it often
outcompetes lodgepole pine to attain dominance (Pfister et
al. 1977).

Western dwarf mistletoe (Arceuthobium campylopod-
um) is perhaps the most damaging disease-causing parasite
of western larch (Schmidt and Shearer 1990). It can
infect seedlings as young as 3 to 7 years old and continue
throughout the life of the tree. In addition to killing tree-
tops, reducing seed viability, creating conditions suitable
for entry of other diseases and insects, and causing burls,
brashness, and some mortality, it decreases height and di-
ameter growth. Three other important diseases are found in
western larch: needlecast caused by Hypodermella laricis,
brown trunk rot, and red ring rot. The exotic larch case-
bearer (Coleophora laricella) and native western spruce
budworm are currently the two most serious insect pests
of western larch (Schmidt and Fellin 1973). However, nei-
ther of these agents causes substantial mortality. Western
larch is susceptible to defoliation as a result of the recent
western spruce budworm outbreak (DeNitto 2013). Larch
needle cast results in substantial needle damage in cooler,
moister springs. Episodic outbreaks of larch casebearer
and western spruce budworm can also cause defoliation
severe enough to reduce the current year’s tree growth
(Schmidt et al. 1976) and disrupt cone production.

Historical and Current Conditions

The more mesic montane western portions of the region
were often dominated by extensive western larch forests
that had regenerated after major fires. The species domi-
nated northwestern Montana and was the major timber
species for most of the 1950s to 1970s. However, extensive
logging as early as 1908 on USFS lands (Arno 2010) re-
moved many of the large tall western larch that could have
survived fire and cast seed across the landscape, and ef-
fective fire exclusion has removed the burned, mineral soil
seedbeds where western larch can regenerate. Continued
fire exclusion has served to increase forest density and
surface fuel loads so that future fires may be more severe.

Climate Change Responses

Western larch is a species that is highly susceptible to
climate warming. Most climate change studies predict
major losses of western larch throughout the Northern
Rockies. Morales et al. (2015) used an SDM approach to
project a 41-percent loss of western larch in its range in
the western United States, and Aston (2010) reports major
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expected declines in western larch habitat in the northern
Rocky Mountains. Rehfeldt and Jaquish (2010) projected
major shifts in western larch in the western portions of the
Northern Rockies, with major losses in Montana and gains
in Idaho. Nitschke and Innes (2008) used gap modeling
approaches to simulate major losses in western larch in
most of British Columbia. Coops and Waring (2011) sug-
gest that western larch may invade many areas vacated
by lodgepole pine in the future in some portions of the
Pacific Northwest. In addition, considering western larch
associates, competitive interactions among species may
play a critical role in the current and projected distribution
of tree species such as western larch (Thuiller et al. 2008).
Although temperature-precipitation interactions tend to set
the limits where species can successfully compete, tem-
perature alone seems primarily responsible for adaptation
of populations within those limits (Rehfeldt et al. 2014).
Western larch will probably migrate to more northerly
and higher areas in the Northern Rockies, but not without
surviving major fires. Gray and Hamann (2013) estimated
western larch could migrate more than 500 miles north-
ward and more than 1,100 feet higher in elevation in the
region by 2050. Western larch has the ability to quickly
take advantage of changes in productivity of colder sites,
providing these areas burn and the western larch survives
the fires to provide sufficient seed for colonization.
Increasing fires may serve to return western larch to the
Northern Rockies landscape, but managers may need to
provide substantial assistance by planting western larch
in burned areas before other species become established.
Continued fire exclusion will probably result in major
declines of western larch in the western portions of the
region because increased competition will reduce vigor,
making the trees more susceptible to damaging agents;
surface and canopy fuel buildups will be so great that
many relic western larch trees will die in uncharacteristi-
cally severe fires (Arno et al. 1997; Davis 1980; Norum
1974). Keane et al. (1996) simulated major declines in the
future for western larch under fire exclusion and moderate
climate change, but found it increased as more fire was al-
lowed to burn in the Glacier National Park landscape.
Western larch exhibits an intermediate adaptive strat-
egy, and geographic clines for most adaptive traits are
relatively flat (Rehfeldt 1994, 1995b). Populations from
northerly latitudes and higher elevations exhibit the low-
est growth potential, least tolerance to larch needle cast,
and the lowest survival. Using a common garden study of
143 populations, Rehfeldt (1995b) demonstrated that an
increase of 9 °F would produce a mean annual temperature
exceeding the current ecological distribution of the spe-
cies. A molecular study using allozymes indicated low
levels of genetic differentiation among populations from
the inland Northwest (Fins and Steeb 1986). Evolutionary
bottlenecks are commonly cited as a mechanism of
reduced genetic differentiation among populations, and
increased differentiation within populations.
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Western larch may be highly susceptible to future
changes in climate primarily because of its narrow geo-
graphic and elevational distribution in the region and its
uncertain association with wildland fire. If wildland fires
increase, western larch may have a distinct colonization
advantage, providing fire mortality is low in those commu-
nities that have extensive fuel buildups from fire exclusion.
However, if fires decrease and exclusion is continued,
western larch may be outcompeted by its shade-tolerant
competitors, and those seed-producing western larch that
remain might be killed by severe fires created by abnormal
fuel accumulations. If western larch is planted in those
severely burned areas, the species will surely remain on
the landscape in the future.

Western White Pine
Autecology

In the Interior West, western white pine (Pinus monti-
cola) grows from near Quesnal Lake, British Columbia,
south through the Selkirk Mountains of eastern Washington
and northern Idaho and into the Bitterroot Mountains of
western Montana (Graham 1990). Isolated populations are
found as far east as Glacier National Park (Loehman et al.
2011a). The climate of the interior portion of western white
pine range is influenced by the Pacific Ocean; summers
are dry and most of the precipitation occurs in the fall and
winter. Western white pine is limited by moisture at lower
elevations and temperatures at upper elevations. The south-
ern boundary is limited by a balance of precipitation and
evaporation.

Western white pine grows on diverse of soil types in
the Northern Rockies (Harvey et al. 2008), but it primarily
grows in areas where the upper soil layers are composed of
loess or loess-like material. In this region, it generally grows
at elevations of between 1,600 and 5,900 feet and where
the topography is steep with V-shaped and round-bottomed
valleys. It grows on a variety of slopes, but is common
along moist creek bottoms, lower benches, and northerly
slopes. Western white pine grows in association with a va-
riety of species, and in the western hemlock/bride’s bonnet
(Clintonia uniflora), western redcedar/bride’s bonnet, and
grand fir/bride’s bonnet habitat types (Cooper et al. 1991).

Western white pine seeds require 20 to 120 days of cold,
moist conditions before germination occurs. Seeds germi-
nate in the spring when soil moisture is at field capacity
from melting snow. Western white pine seedling establish-
ment is favored by partial shade on severe to moderately
severe sites (Graham 1990) but little to no shade on north
slopes. Under full sun, germination begins earlier and ends
earlier than in shaded conditions. Mineral soil surfaces are
preferred over duff. Once established, western white pine
grows best in full sunlight on all sites. Seedlings have low
drought tolerance, and seedling mortality late in the first
growing season is attributed to high surface temperatures
on exposed sites, and drought in heavily shaded areas where
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root penetration is slow. Early root and shoot development
is not rapid.

Western white pine is almost always a seral species and
is classified as intermediate in shade tolerance (Minore
1979). It attains dominance in a stand only following wild-
fire or with silvicultural systems that favor it. It is tolerant
of cold when it is dormant, and similar to lodgepole pine in
cold tolerance.

Genetic variation of western white pine is high, with
the greatest difference being among trees within a stand,
although differences occur among stands and elevational
zones. The adaptation of western white pine to differ-
ent conditions (topographic, climatic, geographic, and
edaphic) is governed more by phenotypic plasticity than by
selective differences. The species has a high outcrossing
rate and average genetic diversity with moderate genetic
differentiation. It is a generalist species with broad climate
and environmental tolerances (Devine et al. 2012).

Disturbance Interactions

Historically, western white pine forests mostly origi-
nated from wildfires, especially stand-replacement burns,
but were also maintained by frequent low-severity fires
(Barrett et al. 1991). The species, especially when mature,
is more tolerant of heat and can better survive fire than
nearly all of its shade-tolerant competitors. Its relatively
thick bark and moderately flammable foliage make it
intermediate in fire resistance among its conifer associates
(Graham 1990). Native American burning was probably
the primary source of fire that created the pure stands of
western white pine in northern Idaho, but lightning was
also important (Graham 1990).

The most prominent agent causing the severe declines
in western white pine is white pine blister rust (Fins et
al. 2002; Harvey et al. 2008). A combination of climate,
extensive white pine blister rust, abundant alternate hosts,
and susceptible western white pine caused significant
losses in the recent past. Selection of naturally resistant
trees as seed sources and planting of rust-resistant nursery
stock can reduce losses. In the absence of blister rust,
western white pine is long-lived, commonly surviving to
300 to 400 years old.

The foremost root disease of western white pine is
Armillaria root rot, which causes fading foliage, growth
reduction, root-collar exudation of resin, dead and rotten
roots, and black rhizomorphs. Annosus root disease and
laminated root rot (Phellinus sulphurascens) also cause
some mortality of individuals and groups. In periods of
drought, pole blight, a physiological disorder, can occur
in stands of the 40- to 100-year age class, causing yellow
foliage and dead resinous areas on the trunk. Later, the
top dies and, after a few years, the tree dies. The disease
apparently is not caused by a primary pathogen but results
from rootlet deterioration in certain soils, which restricts
the uptake of water. Bark beetles are the most important
insects that attack western white pine, and the most im-
portant species is the mountain pine beetle, which kills
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groups of trees, primarily in mature forests. The mountain
pine beetle often attacks trees weakened by blister rust.
Likewise, the red turpentine beetle (Dendroctonus valens)
sometimes attacks weakened trees.

Historical and Current Conditions

Western white pine stands were once extensive across
northern Idaho and parts of Montana, with large, tall
pine trees dominating the montane landscapes (Harvey
et al. 2008). As a result of logging, fire suppression, and
extensive white pine blister rust infection, western white
pine forests are nearly gone, and the species occurs only
as scattered individuals in mixed-conifer stands (Fins et al.
2002). This is truly an ecosystem in decline, and it may be
doomed to extinction without active restoration.

Climate Change Responses

Western white pine presents a special challenge in for-
est management in the future. Recent studies have shown
that western white pine might be the species best adapted
to changes in climate in the northwestern portions of the
Northern Rockies (Loehman et al. 2011a). Using SDMs,
Gray and Hamann (2013) estimated western white pine
could move almost 250 miles northward and 500 feet higher
in elevation in the region by 2050. Its superior growth
rates, ability to survive fire, and high timber value make it
a species to promote in the creation of future forests with
high resilience (Baumgartner et al. 1994; Graham 1990). It
has the unique ability to disperse seeds into burned areas,
which are likely to increase in the future, and the predicted
increases in productivity where it occurs could mean that it
might benefit more than any other tree species from chang-
ing climate, especially in the context of timber production.
However, western white pine is currently ravaged by white
pine blister rust, and it has not yet developed the genetic
capacity to overcome the damaging effects of this exotic
disease to populate future landscapes in the northwestern
Northern Rockies (Fins et al. 2002). The species simply has
not achieved a sufficient level of rust resistance to allow it to
dominate future stands (Harvey et al. 2008). With white pine
blister rust and its alternate hosts (e.g., currant) predicted to
also increase in the future, creating a rust-resistant popula-
tion of western white pine is critical to maintaining it in the
mesic grand fir/western redcedar/western hemlock habitat
types (Baumgartner et al. 1994). Without a comprehensive
western white pine restoration program, there is little chance
that this species will play an important role in the future.

Other issues may govern future western white pine
dynamics. While wildland fire may increase growing space,
thereby providing for high regeneration potential, there
may be few western white pine trees to provide the seed
source needed to regenerate these large burns. Further, in
some portions of the Northern Rockies, the species may be
highly dependent on ash cap soils (Graham 1990), which
may prevent its migration to warmer sites. The species is
also dependent on a unique assemblage of ectomycorrhizae
whose availability in some areas might be reduced in the
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future; suitable substrate may not exist upslope so migration
may not occur.

In summary, we deem western white pine to be highly
predisposed to declines in the future due to the interacting
effects of continued fire exclusion, low levels of white pine
blister rust resistance in native populations, and rapid suc-
cession to more shade-tolerant conifer communities. While
it may be a species of special interest for northwestern
portions of the Northern Rockies, its populations and future
under changing climates is especially precarious because
of blister rust. Abundance of western white pine is cur-
rently low in isolated landscapes, and thus the magnitude
of any decline may be large relative to current and past
populations.

Quaking Aspen
Autecology

Quaking aspen (Populus tremuloides) is the most widely
distributed native tree species in North America and is
abundant in the mountains of western and southwestern
Montana and northern Idaho (DeByle 1985; Perala 1990).
Its habitat is limited primarily to areas of water surpluses
(where annual precipitation exceeds evapotranspiration),
and it is also limited by minimum or maximum growing
season temperatures. Deterioration of aspen stands is often
related to warmer summer temperatures (Perala 1983).
Aspen grows on a variety of soils, but growth and develop-
ment are strongly influenced by both physical and chemical
properties of the soil. The best soils for aspen growth are
usually well drained, loamy, and high in organic matter,
calcium, magnesium, potassium, and nitrogen. Aspen has
an important role in nutrient cycling because of its rapid
growth and high nutrient demand. Aspen is limited by both
shallow and deep water tables (>8.2 feet) because the roots
need sufficient water and good aeration, especially during
the growing season.

Compared to most conifer species, aspen is a short-lived,
disturbance-maintained seral species (Mueggler 1985;
Rogers 2002). It is shade-intolerant and aggressively sprouts
following any disturbance (usually fire) that kills most of
the live stems, thus stimulating vegetative reproduction (i.e.,
suckering) (Bartos 1978). Aspen reproduces primarily by
asexual root sprouting. Parent trees (genets) produce stems/
trees (ramets), resulting in a clone or stand of genetically
identical aspen stems (trees). Damage to parent trees alters
the growth hormones (auxins and cytokinins) and stimulates
a sprouting response (Perala 1990). Soil temperature is the
most critical abiotic factor affecting suckering. Light is not
needed for suckering but is needed for secondary growth.
Eventually, most of the original root connections are severed
as the ramets develop their own root systems to support
nutrient uptake (Rogers et al. 2007; Shepperd and Smith
1993). This reproductive strategy allows aspen to establish
quickly on disturbed sites and outcompete conifers for soil
moisture, nutrients, and light. In addition, the shared root
system maintains overall stand vigor by allowing sharing
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of resources during the early stages of stand development
(Mitton and Grant 1996; Romme et al. 1997).

Although there are a number of different aspen clas-
sifications (Mueggler 1988; Shepperd et al. 2001), it is
widely recognized that aspen occurs as both stable climax
communities and seral, disturbance-maintained communities
(Mueggler 1985, 1988). Stable aspen communities occupy
sites with both high soil moisture and solar radiation, which
apparently preclude establishment of conifers for very long
periods (or they never establish). Stable climax aspen com-
munities do not require disturbance to maintain dominance.
Seral aspen apparently occurs in two forms in the Northern
Rockies. First, there are mesic stands in northwestern
Montana and northern Idaho where aspen is a common
seral component, but it rarely dominates stands unless there
are several consecutive burns (Campbell and Bartos 2001;
Cooper et al. 1991; DeByle 1985). The second seral type oc-
curs in the drier forested areas in the region, such as east of
the Continental Divide, especially in southwestern Montana.
In these seral types, which are created by fire and sprouting,
aspen occurs as the major stand component; these stands
will eventually succeed to more shade-tolerant conifers
(e.g., Douglas-fir, subalpine fir, and Engelmann spruce) in
the absence of disturbance (DeByle 1985; Mueggler 1988).

Aspen has a high genetic diversity because it is es-
sentially a transboreal broadleaf tree. It has weak genetic
differentiation geographically, but strong differentiation at
the population level. There is substantial phenotypic varia-
tion in the species, found both in the field and in genetic
studies, as documented by varied leaf sizes, shapes, and
phenologies.

Disturbance Interactions

Numerous factors other than competition will be impor-
tant for quaking aspen under a changing climate. Perhaps
the most important factor affecting aspen regeneration and
distribution is browsing by ungulates, which frequently
damage reproduction by browsing and by rubbing their
antlers against the stems (Eisenberg et al. 2013; White et al.
1998). Elk (Cervus elaphus) and moose (Alces alces) can
also damage pole- and saw log-size trees by “barking” them
with their incisors. Such injuries often expose individuals
to secondary attack by insects or pathogens. Heavy use by
overwintering ungulates can greatly reduce the number of
aspen trees in localized areas. Cattle and sheep browsing is
a serious problem in many areas of the Northern Rockies
as livestock are allowed to range through recent aspen
clearcuts. Mature aspen stands adjacent to livestock concen-
trations (water holes, salt blocks, and isolated stands in large
open areas) often have root damage, are declining, and have
few if any suckers present.

Fire can kill aspen stands (Bartos 1998), but it also
creates conditions conducive to aspen regeneration and
suckering by eliminating shade-tolerant conifers, which
compete for light and eventually overtop and shade out
aspen, leading to aspen decline (Campbell and Bartos 2001;
Shepperd et al. 2001). Mature aspen trees may not survive
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fire as well as the fire-adapted conifers of the region, but
aspen is easily the most competitive after fire because it
can aggressively regenerate from suckers (Shinneman et
al. 2013). Aspen could do well in a warmer climate with
increased fire frequency, but moisture will limit its suc-
cess, with varying results (Anderegg et al. 2012; Hogg and
Hurdle 1995; Kulakowski et al. 2013; Worrall et al. 2013).

Following disturbance, aspen normally dominates a site
for 40 to 80 years. Natural thinning from disease, aging,
and succession (shading) by competing conifers eventually
reduces aspen abundance (Mueggler 1985; Rogers 2002). In
central Utah, Shepperd et al. (2001) found that both regen-
erating and nonregenerating clones had stems of various age
classes, which suggests that periodic sucker events occurred
in these clones. In addition, they found that all of the non-
regenerating clones had fewer roots than their regenerating
neighbors, which indicates that root systems decline when
clones are not periodically regenerating. Many aspen clones
are known to be associated with ectomycorrhizae (Cripps
and Miller 1993).

Aspen has low susceptibility to insect damage, except in
urban plantings, but stem canker diseases have a significant
impact on aspen ecosystems. Depending on the fungus,
cankers may kill trees within a few years or persist for de-
cades. Hypoxylon canker caused by Hypoxylon mammatum
is probably the most serious aspen disease east of the Rocky
Mountains, killing 1 to 2 percent of the aspen annually
(Perala 1990). Young trees are killed by small rodents and
other mammals, particularly large ungulates (Eisenberg et
al. 2013).

Historical and Current Conditions

Since around 1970, aspen has been in a period of general
decline that is thought to be the result of wildfire exclusion,
which has allowed plant succession to proceed toward con-
ditions that ordinarily exclude aspen (Campbell and Bartos
2001; Frey et al. 2004). Recent episodes of aspen dieback
have been superimposed on this general decline. Dieback
can be recognized by the suddenness of the impact, giving
rise to the term “sudden aspen decline,” and by an epide-
miology that begins with the death of branch tips, death of
mature trees, and eventually death of entire clones (Frey et
al. 2004). The dieback is suspected to be caused by drought.

Climate Change Responses

Aspen is a species that may experience both gains and
losses under future climate, depending on local site condi-
tions, particularly soil moisture. Seral aspen communities
will respond differently from stable, climax aspen com-
munities. Aspen communities on warmer, drier sites could
have high mortality because of increasing water deficit.
Ireland et al. (2014) found that drought was the major fac-
tor causing recent high mortality in southwestern aspen
stands. In the boreal forests of western Canada, Hogg
and Hurdle (1995) estimate that even with an 11-percent
increase in precipitation, boreal forests in which aspen is a
major component will decline due to drought stress. Sudden
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aspen decline has been associated with severe, prolonged
drought, particularly in aspen stands that are on the fringe
of aspen distribution (warmer and drier sites than those
typically considered optimal for aspen persistence) (Frey et
al. 2004). Recent research efforts have found that extreme
weather events (e.g., drought, thaw-freeze events), insect
defoliation, or pathogens, or a combination of these factors,
have led to aspen mortality (Brandt et al. 2003; Candau et
al. 2002; Hogg et al. 2002). Marchetti et al. (2011) found
that aspen mortality from various insects and disease (e.g.,
Cytospora canker [Cyfospora], bronze poplar borer [Agrilus
liragus), and aspen bark beetles Trypophloeus populi and
Procryphalus mucronatus) was greater in those stands that
were drought-stressed and declining due to sudden aspen
death. Further exacerbating the situation is that declining
stands may have little or no regeneration because of intense
ungulate herbivory, and those smaller stands that persist
may be smaller and fewer with increased plant stress due to
increased severity of summer droughts (Rogers et al. 2013).
Growth may increase because photosynthetic rates appear
to increase more in aspen than other tree species as atmo-
spheric carbon increases, but this may be offset by increased
atmospheric ozone, which reduces photosynthesis and may
increase susceptibility to insects and disease.

Increased fire frequency, particularly on moist sites, is
likely to favor aspen regeneration in the future by removing
shading conifers, and younger stands (<40 years old) created
by fire may be more resilient to drought. However, if future
fires are severe, they may kill the shallow root systems and
eliminate aspen. Increased herbivory on regenerating stands
may occur as adjacent upland vegetation senesces and desic-
cates earlier in the growing season. Areas with mountain
pine beetle-caused conifer mortality (especially in lodgepole
pine) may release aspen, and it will regenerate once the
conifer canopy is thinned or removed, again given sufficient
soil moisture.

Grand Fir
Autecology

Grand fir (4bies grandis) is found on a wide variety of
sites, including stream bottoms, and valley and mountain
slopes of the northwestern United States and southern
British Columbia (Foiles et al. 1990). Average precipitation
in its range varies from 20 to 100 inches, but in northern
Idaho the average is from 20 to 50 inches. The average
growing season temperature is 57.2 to 66.2 °F. In the inland
portion of its range, grand fir grows best on rich mineral
soils of valley bottoms but also grows well on shallow
exposed soils of mountain ridges if moisture is adequate
(Antos 1972).

Grand fir is either a seral or climax species, depending on
site moisture (Ferguson and Johnson 1996). On productive
mesic sites, it grows rapidly to compete with other seral
species in the overstory, but it is outcompeted by western
redcedar and western hemlock. On drier sites where western
redcedar and western hemlock are excluded because of
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drought, it is the most shade-tolerant species and can easily
dominate the understory; it eventually assumes the dominant
position in the climax condition. Grand fir is a major climax
species in a variety of habitat types in Montana and northern
Idaho, but it rarely grows in pure stands; one exception is
on the Clearwater River drainage in north-central Idaho
(Cooper et al. 1991; Pfister et al. 1977). In Montana and
parts of Idaho, grand fir can also share dominance, even
in the climax state, with subalpine fir, especially in narrow
valley bottoms where subalpine fir can exert dominance in
lower elevational zones (Antos 1972). In most of its range,
grand fir is often associated with Douglas-fir, ponderosa
pine, western larch, western white pine, and subalpine fir.
Grand fir has a high tolerance to shade but a low
tolerance to drought, even though it can tolerate drought
better than any of the conifers that may succeed it in the
absence of disturbance (e.g., western redcedar and western
hemlock). Grand fir forms associations with ectomycor-
rhizae and arbuscular mycorrhizae, which may allow it to
outcompete some shade-tolerant conifers. It has a very low
frost tolerance but can tolerate seasonally fluctuating water
tables. It is monoecious and produces large, winged seed
dispersed by wind. It has average levels of genetic diversity
but weak geographic differentiation.

Disturbance Interactions

Grand fir is susceptible to fire damage in moist creek
bottoms but is more resistant on dry hillsides where roots
are deeper and bark is thicker (Ryan and Reinhardt 1988).
Grand fir is less resistant to fire than western larch, ponder-
osa pine, and Douglas-fir but more resistant than subalpine
fir, western hemlock, and Engelmann spruce. Most fires that
burn grand fir sites are stand-replacement or mixed-severity,
and these fires burn in fuels that generate sufficient heat to
kill most grand fir trees (Arno 1980; Arno et al. 2000).

Grand fir is susceptible to heart rot and decay. Armillaria
root rot and annosus root disease are common root diseases
causing high tree mortality (Hagle et al. 2003). Numerous
insects attack grand fir. The western spruce budworm and
Douglas-fir tussock moth have caused widespread defolia-
tion, topkill, and mortality in grand fir. The western balsam
bark beetle (Dryocoetes confusus) and the fir engraver
(Scolytus ventralis) are the principal bark beetles attacking
grand fir (Foiles et al. 1990).

Historical and Current Conditions

Fire exclusion has increased grand fir on both dry and
mesic sites, but increased tree densities have also stressed
grand fir trees, contributing to increased fuel loadings,
higher root rot, and greater insect damage and mortality.
Historically, grand fir sites were probably dominated by
western larch, western white pine, Douglas-fir, and pon-
derosa pine because of frequent fires, but these sites have
since succeeded to the more shade-tolerant grand fir, and on
the productive mesic sites, to western redcedar and western
hemlock. Therefore, the condition of most grand fir stands
depends on the last severe fire; if fire exclusion has caused
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grand fir to dominate in both the overstory and understory,
then these stands are usually highly stressed because of in-
creased root rot and insect agents. However, in earlier seral
stands that have not yet experienced high grand fir regenera-
tion, a rise in grand fir cover types is likely with continued
fire exclusion.

Climate Change Responses

On xeric sites, increased drought and longer growing
seasons will exacerbate grand fir stress from competition,
resulting in high mortality mainly from insects and disease.
Nitschke and Innes (2008), using a gap modeling approach,
projected major declines in grand fir, and Coops and Waring
(2011) used a mechanistic model to simulate a nearly
50-percent decrease in the range of grand fir compared to
historical distributions. Franklin et al. (1991) projected that
grand fir will nearly disappear from the east slope of the
Cascades.

Yet projections of increased productivity suggest
increased grand fir populations on moderate sites (Aston
2010). Urban et al. (1993) projected an expansion of grand
fir forests into upland xeric sites of the Pacific Northwest.
On mesic sites where grand fir is seral to western redcedar
and western hemlock, the longer growing seasons coupled
with higher temperatures may increase growth rates and
regeneration success, thereby increasing tree density and
competition and effectively reducing grand fir components.
The opposite is true on those sites where grand fir is the in-
dicated climax; grand fir will increase in both the overstory
and understory in the absence of disturbance.

Disturbance, specifically fire, could be the major factor
in the rearrangement of grand fir communities across the
Northern Rockies landscape. Longer fire seasons and high
fuel loadings from both fire exclusion and increased produc-
tivity will serve to foster large, severe fires that may reduce
grand fir, especially on those sites where it is the indicated
climax species (i.e., grand fir habitat types). Fire will reduce
grand fir dominance at both landscape and stand scales.

In summary, although many grand fir forests are highly
stressed from high tree densities, the species will probably
tolerate changes in climate and remain on the landscape at
levels that are closer to historical conditions rather than the
high abundance observed now.

Western Redcedar
Autecology

The inland range of western redcedar (Thuja plicata)
extends from the western slope of the Continental Divide in
British Columbia south through the Selkirk Mountains into
western Montana and northern Idaho (Minore 1990). The
southern limit is Ravalli County and the eastern limit is near
Lake McDonald in Glacier National Park. A few trees may
exist east of the Continental Divide near St. Mary’s Lake
(Pfister et al. 1977). Western redcedar is abundant in many
forested swamps as well as sites that are too dry for western
hemlock; it has better root penetration than western hemlock
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(Habeck 1978). Western redcedar dominates wet ravines and
poorly drained depressions. Where there is sufficient pre-
cipitation, low temperatures limit the range of the species.

It is not resistant to frost and can be damaged by freezing
temperatures in late spring and early fall.

Western redcedar occurs only in pure stands where fire
has been excluded for a long time, or where fire has been
used to maintain western redcedar dominance (Barrett 1988;
Barrett and Arno 1991). It is commonly associated with a
wide array of tree species: grand fir, western white pine,
western hemlock, western larch, and ponderosa pine. Only
western hemlock in the Northern Rockies is more shade-
tolerant than western redcedar, but western redcedar can
be overtopped by Douglas-fir, grand fir, western hemlock,
and western white pine (table 6.3). Its relative shade toler-
ance may be higher in warm than in cool areas, but western
redcedar is very tolerant wherever it grows. Often present
in all stages of forest succession, western redcedar can oc-
cupy pioneer, seral, and climax positions. In the Northern
Rockies, however, most western redcedar stands are in the
late seral-stages; it is usually considered a climax or near
climax species. It has little tolerance to drought but can exist
in seasonally wet areas, especially near riparian systems
(Devine et al. 2012).

Western redcedar regenerates best on disturbed mineral
soil, although scorched soil is not beneficial to its regen-
eration. Rotten wood that is in contact with the soil is a
preferred seedbed in western redcedar groves. Western red-
cedar also propagates by clones, and clones tend to be more
abundant than young trees established by seed. Establishing
seedlings survive best in partial shade, as they are not
tolerant of high soil temperatures or frost. Young branches
are susceptible to sunscald. Roots of young seedlings grow
more slowly than Douglas-fir roots but faster than western
hemlock roots, and shoots have the longest growing period
of any of the associated conifers.

Western redcedar has very low levels of genetic diversity,
and this diversity is weakly distributed geographically and
within populations. Clines are very gentle and seed zones
narrow. This species cannot tolerate wide ranges of environ-
mental conditions.

Disturbance Interactions

Relative to its associates, western redcedar is not as
affected by damaging agents, but because it is long-lived,
damaged trees are common (Minore 1990). Although west-
ern redcedar trees are somewhat wind-firm, especially on
dry sites, the trees are often wind thrown in wetter environ-
ments. Western redcedar is less susceptible to fire damage
than Engelmann spruce, western hemlock, grand fir, and
subalpine fir in the Northern Rockies. Western redcedar is
also less susceptible than other associated species to root
pathogens. However, root disease still impacts western
redcedars, and fungi eventually invade heartwood typically
resistant to decay. In North America, the most important
fungi attacking western redcedar are root, butt, and trunk
rots, most importantly laminated root rot, honey fungus
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(Armillaria mellea), and stringy butt rot (Perenniporia
subacida).

Historical and Current Conditions

Compared to historical distributions, there has not been a
significant increase or decrease in western redcedar distribu-
tion in the Northern Rockies. However, western redcedar
dominance has probably increased in those stands occupy-
ing mesic western redcedar sites due to fire exclusion.

Climate Change Responses

With warmer temperatures, mesic northern Rocky
Mountain ecosystems may increase in productivity (Aston
2010), and western redcedar may expand into more upland
communities. Hamann and Wang (2006) projected that the
western hemlock/cedar forests of British Columbia would
double in range by 2050, and Urban et al. (1993), using
gap modeling, simulated an expansion of western redcedar
into upland western Oregon sites. Devine et al. (2012) rated
western redcedar as having moderate vulnerability in the
Pacific Northwest Region. With increased western redcedar
productivity could come increased cone production and seed
dispersal into new areas that might be more conducive to
long-term seedling establishment.

Although warmer conditions in the future may benefit
western redcedar, drier conditions in the future are likely
to result in retraction of western redcedar to the warmer,
wettest Northern Rockies sites; upland western redcedar
stands might have high mortality from declining productiv-
ity. Woods et al. (2010) noted recent declines in western
redcedar in British Columbia and attributed the decline
to increased drought that decreased vigor and increased
insect attacks and disease in western redcedar. Warming
may also result in a loss of chilling required for western
redcedar (Nitschke and Innes 2008), and the narrow genetic
potential of western redcedar (Devine et al. 2012) may limit
its expansion into new habitats. Using SDMs, Gray and
Hamann (2013) estimated western redcedar might move
400 miles northward and 1,000 feet higher in elevation in
the Pacific Northwest by 2050. However, in some portions
of the region, redcedar is mostly associated with ash cap
soils, so despite the possible creation of new habitats by new
climates, the potential of non-ash soils to sustain productive
western redcedar may be limited.

It is uncertain how disturbance will affect western
redcedar in the future. Fire can serve to maintain western
redcedar communities if it burns at low severities and kills
only seedlings and saplings. However, high-severity wild-
fires could eliminate seed sources. Continued fire exclusion
may maintain current western redcedar distributions, but
without proactive fuels treatments, wildfire that occurs after
long periods of exclusion may burn with sufficient severity
to cause extensive western redcedar mortality. Further, new
warm-cold cycles may facilitate the injury called red belt
and adversely affect young western redcedar, as evidenced
by increased flagging during past dry seasons.
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In summary, western redcedar may not be severely af-
fected by future climate warming. The species may remain
in its current range, and productivity may increase in some
settings.

Western Hemlock
Autecology

The inland range of western hemlock (7suga hetero-
phylla) includes the west side of the Continental Divide
in Montana and Idaho, north to Prince George, British
Columbia (Packee 1990). Western hemlock thrives in mild
humid climates and in environments with abundant soil
moisture throughout the growing season (Hann et al. 1994).
Where the growing season is relatively dry, western hem-
lock is confined primarily to northerly aspects, moist stream
bottoms, or seepage sites. Western hemlock grows on a
variety of soil types, although it is a shallow-rooted species
and does not develop a taproot. Abundant roots, especially
fine roots, grow near the soil surface and are easily damaged
by fire.

Western hemlock is considered very shade-tolerant and is
perhaps the most shade-tolerant tree species in the Northern
Rockies (table 6.3). It is a major climax or near-climax
species in the region and is found with nearly all of the
other conifer species, including western redcedar, grand fir,
Douglas-fir, western larch, western white pine, lodgepole
pine, and ponderosa pine. Seed germination and germinant
survival occur when there is adequate moisture. Western
hemlock can germinate on a variety of materials and in both
organic and mineral seedbeds. Decaying logs and rotten
wood are often favorable seedbeds; decayed logs have the
added benefit of providing nutrients. Western hemlock is
highly susceptible to drought and demands abundant water
throughout the growing season (Baumgartner et al. 1994). It
is associated with some ectomycorrhizae. Its seedlings are
highly susceptible to frost.

Western hemlock has relatively low genetic diversity and
low geographic differentiation. It has a high outcrossing rate
and average heterozygosity (Devine et al. 2012). Growth
rate is more related to soil conditions than to genetics.

Disturbance Interactions

A variety of root and bole pathogens cause significant
damage and mortality in western hemlock. It is also very
susceptible to fire damage because of its shallow roots and
thin bark, and it is also susceptible to windthrow owing to
shallow roots. On droughty sites, top dieback is common,
and entire stands of western hemlock saplings have been
killed in exceptionally dry years. Western hemlock is highly
susceptible to annosus root disease and Indian paint fungus
(Echinodontium tinctorium), but seems to have a high toler-
ance to Armillaria root rots (Packee 1990).

Historical and Current Conditions

The current distribution of western hemlock is similar
to its historical distribution. However, most stands with
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western hemlock have become denser and the western
hemlock component has increased in both the overstory and
understory. Overly dense western hemlock stands may be
declining in vigor, thereby becoming more susceptible to
disease, insects, and abiotic perturbations (e.g., windthrow).

Climate Change Responses

In the past, western hemlock/western redcedar forests
were associated with wetter conditions in the low eleva-
tion forests of the Northern Rockies, but this type declined
as fires and drought increased (Gavin et al. 2007). Thus,
increased drought and area burned may decrease western
hemlock abundance and distribution. Several studies have
projected contractions in western hemlock distribution. For
example, Hansen et al. (2001) simulated major contractions
in western hemlock range, and Franklin et al. (1991) project
that western hemlock will occupy about half its current
range on the western slopes of the Cascades. Shafer et al.
(2001) noted that western hemlock may decrease in range
because chilling requirements for the seeds will not be met.
Using a mechanistic landscape model, Keane et al. (1996)
simulated losses of western hemlock and western redcedar
under moderate climate warming in Glacier National Park,
mostly as a result of severe fires. Cumming and Burton
(1996) projected minor changes in the western redcedar-
western hemlock zone in British Columbia under moderate
warming. On the other hand, Hamann and Wang (2006)
predicted that western hemlock would increase its range by
more than 200 percent in British Columbia, and using gap
modeling, Urban et al. (1993) simulated an expansion of
western hemlock into upland western Oregon sites.

It is possible that western hemlock will maintain its
current range under a changing climate. It may not have
the diversity in growth habit that will allow it to expand
its range into the more upland sites as temperatures warm.
Because the species is dependent on ash cap soils, any
migration may be relegated to those wetter and warmer sites
without ash cap soils.

Lodgepole Pine
Autecology

Lodgepole pine (Pinus contorta) has wide ecological am-
plitude, but only the inland form (P. contorta var. latifolia) is
found in the Northern Rockies (Lotan and Critchfield 1990).
Lodgepole pine has the widest range of environmental toler-
ance of any conifer in North America (Lotan and Critchfield
1990). It is relatively resistant to frost injury and can often
survive in frost pockets where other species cannot (Pfister
et al. 1977). In Montana, lodgepole pine does not grow on
highly calcareous soils derived from dolomitic limestone
(Lotan and Perry 1983). Lodgepole pine is primarily found
on moist soils developed on colluviums from other types of
limestone and calcareous glacial till. It grows well on gentle
slopes and in basins, but it is also found on rough and rocky
terrain, steep slopes and ridges, and bare gravel (Lotan and
Critchfield 1990). Compared to other associated species,
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lodgepole pine is intermediate in its needs for water, requir-
ing more than Douglas-fir or ponderosa pine but less than
spruce and subalpine fir in the region.

Lodgepole pine is intolerant of shade but highly tolerant
of frost and drought (table 6.3). Occasionally seedlings
become established under a forest canopy, but these indi-
viduals rarely do well and remain in a stunted form for long
periods of time (decades to centuries). In the absence of fire,
lodgepole pine is usually succeeded by its more tolerant
associates, such as Douglas-fir in xeric environments and
Engelmann spruce and subalpine fir in subalpine environ-
ments. Succession proceeds at variable rates, however, and
is particularly slow in some high elevation forests (Arno
et al. 1993). Lodgepole pine grows both in pure stands
and in association with many conifers, primarily subalpine
fir, spruce, Douglas-fir, and western larch (Steele et al.
1983). Its successional role is dependent on environmental
conditions and on competition. It is seral in most mesic
Northern Rockies forest communities (Arno et al. 1986).
However, on cool dry habitats, such as those found in the
Greater Yellowstone Area and southeastern Idaho, it is
dominant and tends to be persistent and form near-climax
communities (Despain 1983). Its ability to remain on xeric
landscapes is enhanced by its association with many types
of mycorrhizae.

Lodgepole pine has a great ability to regenerate due to a
combination of cone serotiny, high seed viability, early rapid
growth, and ability to survive a wide variety of microsite
and soil conditions (Hardy et al. 2000). The serotinous
cone habit, where cones open only after being heated by
wildland fire, is common in the Rocky Mountains, but in
general, the highest serotiny is found in the northern parts
of the region. Large quantities of stored seeds are available
for regeneration after fire, and annual seedfall from non-
serotinous cones helps in restocking in areas of relatively
minor disturbance and maintaining lodgepole pine presence
in mixed stands.

The best lodgepole germination occurs in full sunlight
and on bare mineral soil or disturbed duff, with little com-
petition. Adequate soil moisture is required for germination
and survival, with the first few weeks being most critical. In
southwestern Montana most of the season’s total germina-
tion occurs during the 2 weeks following snowmelt in late
June when soil is saturated and temperatures most favor-
able. Drought is a common cause of mortality in first-year
seedlings. Freezing temperatures may kill seedlings, but
seedlings vary in frost resistance based on seed source. Frost
heaving also causes mortality. Height growth begins earlier
than in other associated species, except for other pines and
western larch.

There is moderate genetic variation in strains of lodge-
pole pine, resulting in some strains growing well in cold
climate and on poor sites. Lodgepole pine has an average
genetic diversity but a weak differentiation across its
Northern Rockies range and strong differentiation among
populations. The species is a prolific seed producer and has
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a good cone crop at about 1- to 3-year intervals. It is wind
pollinated and its seeds are wind dispersed.

Disturbance Interactions

Fire plays a critical role in lodgepole pine forest succes-
sion (Lotan et al. 1984). Typically, many Northern Rockies
lodgepole pine forests originated from stand-replacement
fires, but extensive fire scars in Northern Rockies lodgepole
pine forests indicate the existence of a low-severity, non-
lethal fire regime component in these forests, especially in
many areas east of the Continental Divide (Arno et al. 1993;
Stewart and Arno 1997). Lodgepole pine is apparently able
to survive low-intensity fires quite well even though it has
thin bark (Ryan and Reinhardt 1988). However, most lodge-
pole pine forests in the region have a mixed-severity fire
regime in space and time, where all fire severity types are
possible depending on available fuels, antecedent drought,
and wind conditions (Arno et al. 2000). Consequently,
lodgepole as a species will be well adapted to the fires of
the future. Repeated fires, however, can eliminate lodgepole
pine seed sources if the fires occur before existing lodgepole
has become reproductively mature (approximately 10
years). In most cases, lodgepole pine natural regeneration
often overwhelms a burned site with abundant seed from
serotinous cones and thereby excludes other species (Lotan
and Perry 1983; Nyland 1998).

The mountain pine beetle is the most important insect
pest and has played a significant role in the dynamics
of lodgepole ecosystems (Roe and Amman 1970). Past
research has tried to link fire, beetles, and lodgepole pine
in a complex web of interactions (Geiszler et al. 1980).
However, recent findings have shown that fire and beetles
often act independently to influence lodgepole pine dy-
namics (Axelson et al. 2009; Moran and Corcoran 2012;
Schoennagel et al. 2012).

Historical and Current Conditions

Advancing succession due to fire exclusion is contribut-
ing to replacement of lodgepole pine with subalpine fir in
many areas of the Northern Rockies. Keane et al. (1994)
found successional advancement of subalpine communi-
ties in the upper subalpine landscape of the Bob Marshall
Wilderness increased from less than 8 percent of the land-
scape to more than 22 percent. Concurrent increases in burn
areas are creating many new lodgepole stands and some
may become dense thickets, but coupled with increased
drought, these dense lodgepole stands may exacerbate
stress from other factors, including competition, endemic
insects and diseases, and wind. Warming temperatures have
heightened bark beetle activity, resulting in more frequent
and severe outbreaks that have devastated many mature
lodgepole pine communities in the central Northern Rockies
(Carroll et al. 2003).

Climate Change Responses

Longer drought periods and warmer temperatures in
the lower, south-facing, drier lodgepole pine subalpine
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environments may cause decreased tree growth and re-
generation potential, perhaps resulting in a transition to
more-xeric trees species, such as Douglas-fir. Chhin et al.
(2008) found that recent warming has decreased lodgepole
pine growth rates in the foothill lodgepole pine communities
of the low elevation forests in Alberta. Coops and Waring
(2011) used process modeling to simulate minor declines
with moderate warming in lodgepole pine in the Pacific
Northwest (Oregon, Washington, and British Columbia), but
major type conversions to other species with greater warm-
ing. Using an SDM approach, Hamann and Wang (2006)
projected a net 50 percent loss of lodgepole pine in British
Columbia under severe warming. Nigh (2014) projected
that lodgepole pine heights may decrease by roughly 3 feet
in moderate future warming, but the species has the genetic
capacity to mitigate this height loss. In contrast, Rehfeldt

et al. (1999) found substantial decline in lodgepole pine
growth and height with minor changes in climate. Chhin

et al. (2008) also found that decreases in lodgepole pine
growth were correlated with high summertime temperatures,
presumably related to summer drought. However, they also
found that lodgepole pine growth increases with high fall
temperatures. Gray and Hamann (2013) used SDM tech-
niques and estimated lodgepole pine would move more than
250 miles northward and more than 650 feet higher in eleva-
tion in the Northern Rockies by 2050. Bell et al. (2014),
using SDMs, projected losses of more than 70 percent of its
Northern Rockies range by 2090. Given that lodgepole pine
is a generalist that is capable of regenerating and growing

in a wide range of environments, it is likely that the decline
of lodgepole pine from drier sites will occur only under ex-
treme warming scenarios (e.g., RCP 8.5 and A2) over longer
time periods.

Another possibility is that, in the higher elevational areas
of the Northern Rockies subalpine, where seasonal drought
is not a problem, warming climates may actually increase
lodgepole pine productivity because of high precipitation
(Aston 2010). Johnstone and Chapin (2003) show that
lodgepole pine is not in equilibrium with current climate;
thus the response of the species to climate shifts will be
difficult to predict using SDM approaches. However, they
found that there are places where lodgepole pine will be
positively affected by climate change. Wang et al. (2006)
projected major increases in lodgepole pine productivity
under future climates with moderate warming, but major
decreases and perhaps local extinctions under extreme
warming. Romme and Turner (1991) projected increases
in the lodgepole pine zone in the GYA under moderate
warming.

A third possibility is that lodgepole pine will migrate into
areas where it is currently excluded by harsh, cold, windy
conditions, such as the upper subalpine and treeline. This
relocation process will likely be catalyzed by fire, especially
in those areas with high serotiny. Clark et al. (2017) found
that under moderate warming, lodgepole pine would remain
on the GYA landscape, but it would also expand into higher
elevation environments historically occupied by whitebark
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pine. Most studies have projected the migration of lodgepole
pine into the whitebark pine zone (Hamann and Wang 2006;
Romme and Turner 1991).

Lodgepole pine is well adapted to increases in fire occur-
rence, depending on level of serotiny (Turner et al. 1999).
Smithwick et al. (2009) simulated some positive increases
in GYA lodgepole pine after fire and under climate change.
If fire is too frequent, however, lodgepole may be eliminated
from sites where fires reburn stands before established
seedlings and saplings become reproductively mature. Clark
et al. (2017) simulated major and rapid decreases in GYA
lodgepole pine under high climate warming due to both
inhospitable environments and too frequent fire.

In mesic subalpine sites, continued fire exclusion coupled
with higher productivities will certainly heighten competi-
tive interactions and put more lodgepole pine trees into
stress, thereby increasing mortality, vulnerability to insects
and disease, and canopy and surface fuels, and accelerating
succession toward subalpine fir (Smithwick et al. 2009).
Severe fires that then occur in these advanced successional
communities could convert communities back to lodgepole
pine, providing there is not a loss of seed source. Fire exclu-
sion, especially in areas of high serotiny, might delay the
expansion of lodgepole pine.

Projected increases in climatic conditions that facilitate
mountain pine beetle outbreaks could reduce lodgepole
pine populations and forest extents (Creeden et al. 2014;
Gillette et al. 2014). Lodgepole pine is highly susceptible to
bark beetle mortality, especially on those landscapes where
fire exclusion has resulted in an abundance of mature hosts
(Temperli et al. 2013). Bark beetle outbreaks will favor the
more shade-tolerant, nonhost tree species, thereby creating
dense stands that may be subject to severe crown fires after
10 to 20 years. If beetle-killed stands burn, lodgepole pine
can occupy the burned area only if viable seed sources
remain. The varying levels of serotiny and beetle mortality
will dictate future stand conditions in beetle-killed stands.
Landscape heterogeneity is the only hedge against massive
declines of lodgepole pine in the future (Logan and Powell
2001).

In summary, lodgepole pine is expected to both expand
and contract in range, but as long as fire remains on the
landscape, the species is likely to maintain its presence in
the Northern Rockies at roughly the same proportions as
during the last 100 years, albeit in different areas. The spe-
cies is highly exposed to any climate changes because of its
wide range and diverse growing environments. But Soulé
and Knapp (2013) suggest that the steep clines associated
with lodgepole pine may be driven more by density-
dependent selection than by environmental selection, so this
species may be well adapted to future changes in climate.

In addition, although the magnitude of climate effects is
likely to be great for tree growth, it may be only moderate
for species survival compared to other species. The likeli-
hood of these effects is highly uncertain, primarily because
of the uncertainty about fire frequency and severity, which
determine the extent to which fire will continue to play its
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role in the maintenance of lodgepole as a major component
on future landscapes.

Whitebark Pine
Autecology

Whitebark pine (Pinus albicaulis) is an important
component of high-elevation upper subalpine forests in the
western United States and Canada (Arno and Hoff 1990). It
is a keystone species because it supports unique community
diversity, and it is a foundation species because of its roles in
promoting community development and stability (Tomback
and Achuff 2010; Tomback et al. 2001). More than 90 percent
of whitebark pine forests occur on public lands in the United
States and Canada, so maintaining whitebark pine communi-
ties requires a coordinated effort across Federal, State, and
Provincial land management agencies (Keane et al. 2012).

Whitebark pine is a long-lived tree of moderate shade
tolerance (Minore 1979) (table 6.3). It is common to find
mature whitebark pine trees well over 400 years of age,
especially on harsh growing sites; the oldest is more than
1,275 years (Luckman et al. 1984). Well-formed, thrifty in-
dividuals often have smooth gray bark, especially in the tree
crowns, which may appear whitish in bright sunlight (Arno
and Hoff 1990). Whitebark pine is slow growing in both
height and diameter, and it rarely grows faster than most of
its competitors, except on the most severe sites (Arno and
Hoff 1990). In general, whitebark pine grows where sum-
mers are short and cool and where most precipitation comes
in the form of snow and sleet, with rain only in June through
September. Whitebark pine survives strong winds, thunder-
storms, and severe blizzards, and is one of the few upper
subalpine species that can tolerate long periods of drought
(Callaway et al. 1998).

Whitebark pine is a major component of high elevation
forests throughout the upper subalpine and treeline zones in
the Northern Rockies (Arno and Hoff 1990). Whitebark pine
forests occur in two high mountain biophysical settings.

On productive upper subalpine sites, whitebark pine is the
major seral species that is replaced by the more shade-
tolerant subalpine fir, Engelmann spruce, and mountain
hemlock, depending on geographic region (Arno 2001).
These sites, referred to as “seral whitebark pine sites,” sup-
port upright, closed-canopy forests in the upper subalpine
lower transition to treeline, just above or overlapping with
the elevational limit of the shade-intolerant lodgepole pine
(Pfister et al. 1977); the two pine species can often share
dominance. Other minor species found with whitebark pine
on these sites are Douglas-fir, limber pine, and alpine larch
(Keane et al. 2012). Sites where whitebark pine is the only
tree species able to successfully dominate high elevation
settings (called climax whitebark pine sites) occur in the
upper subalpine forests and at treeline on relatively dry,
cold slopes. Other species, such as subalpine fir, spruce, and
lodgepole pine, can occur on these sites, but as scattered
individuals with truncated growth forms. Whitebark pine
can also occur as krummbholz, elfin forests, clusters, groves,
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tree islands, and timber atolls in the alpine treeline ecotone
(Tomback 1989) and as a minor seral in lower subalpine
sites (Cooper et al. 1991; Pfister et al. 1977).

Whitebark pine is eventually replaced, in the absence
of fire, by the shade-tolerant subalpine fir, spruce, and
mountain hemlock on the productive, seral whitebark pine
sites (Arno and Hoff 1990). It can take 50 to 250 years for
subalpine fir to replace whitebark pine in the overstory,
depending on the local environment and fire history (Keane
2001). Whitebark pine competes with lodgepole pine during
early successional stages in the lower portions of its eleva-
tional range. Lodgepole pine usually has the competitive
advantage over whitebark pine when it establishes from
seed after a stand-replacing disturbance event because of its
fast growth, serotiny, and copious seed production.

A bird (Clark’s nutcracker) and whitebark pine have
coevolved into a mutualistic relationship that ensures their
continued presence on the landscape (Tomback 1982, 1983).
Whitebark pine has evolved a nearly exclusive dependence
on nutcrackers to disperse its large wingless seeds, and in
turn, nutcrackers utilize the large whitebark pine seeds as
an important food source. The key behavior that benefits
the whitebark pine is the tendency of nutcrackers to bury
thousands of whitebark pine seeds each year as food stores
in small clusters or “seed caches” across diverse forest
terrain (Keane et al. 2012). Nutcrackers retrieve these seed
caches primarily in spring and summer as an important food
source for themselves and their young. However, not all
seed caches may be recovered, particularly following a large
cone crop. Snowmelt, spring rains, and summer showers
stimulate seed germination, leading to whitebark pine regen-
eration. Although whitebark pine depends nearly exclusively
on nutcrackers, nutcrackers often harvest and cache seeds of
other large-seeded pines.

Whitebark pine is a genetically diverse species because
of its dependence on bird-mediated seed dispersal (Keane et
al. 2012). As a result, the species is highly adapted to exist
across many environments, and is limited only by competi-
tion, even at the lowest elevations. It has only six seed zones
across its entire range, so it is easily able to migrate across
local landscapes to rapidly take advantage of newly burned
areas. Whitebark pine has weak geographic differentiation
in the Northern Rockies, but a moderate level of inbreeding.
One concern in the future is that the breeding of rust resis-
tance in future whitebark pine seedlings may compromise
other important traits; Mahalovich et al. (2006) found lower
cold tolerance in highly rust-resistant seedlings grown in the
nursery.

Disturbance Interactions

Whitebark pine fire regimes are complex and variable
in space and time, but in general, all three types of fire
severities describe whitebark pine fire dynamics: nonlethal,
stand-replacing, and mixed-severity (Morgan et al. 1994b).
Some whitebark pine stands may undergo fire events that
burn in low-intensity nonlethal surface fires (sometimes
called underburns or low-severity fires) because of sparse
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surface and canopy fuel loadings and unique topographical
settings. However, most fires in the upper subalpine burn in
mixed-severity patterns that best facilitate continued exis-
tence of whitebark pine (Keane et al. 1994).

Mountain pine beetle is by far the most damaging insect
in mature stands of whitebark pine. Much of the mature
whitebark pine in the Northern Rockies was killed by this
insect between 1909 and 1940. Epidemics evidently spread
upward into the whitebark pine forest after the beetle be-
came established in the lodgepole pine forests below. The
GYA whitebark pine ecosystems have recently suffered one
of the most severe mountain pine beetle mortality events in
recorded history.

The principal disease of whitebark pine is the introduced
white pine blister rust (Schwandt 2006). Blister rust is
particularly destructive where the ranges of whitebark pine
and blister rust coincide with currant, the alternate host of
the rust. Where there is a source of inoculum from lowland
forests, the spores that infect pine can be carried by wind to
the trees, but cool, moist conditions are needed for infection
in whitebark pine. Blister rust damage is severe and pre-
vents tree development in many upper subalpine settings of
northern Idaho and northwestern Montana. Whitebark pine
has some resistance to the disease, and efforts at developing
rust-resistant seed for regenerating burned and treated areas
have been very successful.

Historical and Current Conditions

Whitebark pine has been declining since the early 20t

century from the combined effects of native mountain pine
beetle outbreaks, contemporary fire exclusion policies, and
the spread of the exotic white pine blister rust (Schwandt
2006; Tomback and Achuff 2010). Losses of whitebark pine
in some areas of the Northern Rockies exceed 80 percent
(Keane et al. 2012). Whitebark pine is listed as endangered
in Alberta, it is a candidate species for listing under the U.S.
Endangered Species Act (USFWS 2011), and it is listed as
endangered in Canada under the Federal Species at Risk
Act. Within the last decade, major outbreaks of pine beetle
and increasing damage and mortality from blister rust have
resulted in cumulative whitebark pine losses that have al-
tered high-elevation community composition and ecosystem
processes in many regions of the United States and Canada.

Climate Change Responses

There is much disagreement in the research and man-
agement communities about the fate of whitebark pine as
climates slowly warm. Some maintain that projected warmer
conditions will severely reduce whitebark pine habitat and
push whitebark pine “off the tops of mountains” (Lenoir
et al. 2008) or restrict the species to north of the Canadian
border (Koteen 1999; Schrag et al. 2007; Warwell et al.
2007). This assumes that less hardy, shade-tolerant conifer
species would establish in those higher elevation stands
where whitebark pine currently dominates, and whitebark
pine would “migrate” upslope to the limited areas above
its current elevational range (Romme and Turner 1991).
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Bell et al. (2014), using SDMs, project minor losses (10-20
percent) in whitebark pine range in the Northern Rockies
by 2090. Others hold that climate-mediated changes in

the disturbance regimes will serve to keep whitebark pine
within its current range, albeit at lower levels (Loehman et
al. 2011b). The fate of whitebark pine is uncertain because
of high uncertainty in regional climate change predictions,
the high genetic diversity and resilience of the species, and
the localized changes in disturbance regimes and their inter-
actions (Keane et al. 2015a).

Climate change has the potential to significantly impact
whitebark pine ecosystems (Bartlein et al. 1997). Devine
et al. (2012) rated whitebark pine the most vulnerable of
all the Pacific Northwest tree species, primarily because of
restricted range and white pine blister rust infections. Taking
a historical perspective, however, we can see that whitebark
pine was able to persist through many major climatic cycles
in the past. Historical analogs of warmer climates in the pa-
leoecological record indicate whitebark pine was maintained
and even increased in some places under past warmer and
drier climates in parts of its range (Whitlock and Bartlein
1993; Whitlock et al. 2003). Whitebark pine can grow
within a broad upper-elevation zone in the West; it just
happens to grow best at high elevations where there is little
competition from other tree species. For example, Arno et
al. (1995) found that the elevational range of whitebark pine
in the Bitterroot Mountains of Montana extended more than
500 feet below its current lower elevation limits. Nitschke
and Innes (2008) suggested that temperature alone would
exclude whitebark pine from British Columbia landscapes.
However, whitebark pine occupies the largest range of any
five-needle pine in the United States and Canada—about 18°
of latitude and 21° of longitude—indicating a great deal of
tolerance to different climates (Tomback and Achuff 2010).
Because it is bird dispersed, it is planted and grows in many
environments and dies only from competition (Arno and
Hoff 1990). Moreover, its longevity provides potential buft-
ering against changing climates (Morris et al. 2008).

The same three responses of tree species to climatic
change will occur for whitebark pine: Ranges will decline,
stay the same, or expand. SDM studies have projected
dramatic decreases in whitebark pine habitat over the next
50 years (McDermid and Smith 2008; Warwell et al. 2007).
Hamann and Wang (2006) projected a 100 percent decline
in whitebark pine in British Columbia with high levels of
warming. These models also predict that whitebark pine will
probably make a transition to treeline environments that are
above the current elevational range, but these transitional ar-
eas are much smaller than the traditional range of whitebark
pine, thereby resulting in a net loss of the species. Climate
can adversely affect growth and mortality of whitebark
pine in many ways (Bugmann and Cramer 1998; Keane
et al. 2001). Projected decreases in water availability may
result in less water being available for some droughty sites.
Longer drought might cause whitebark pine to shut their sto-
mata longer to conserve the little water available, resulting
in slow growth.
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However, many whitebark pine stands may have positive
responses to warming climates. Anecdotal evidence shows
that some whitebark pine forests are exhibiting abnormally
high growth and more frequent cone crops with warmer
summers and longer growing seasons. These observations
are consistent with some region-based scenarios using com-
puter modeling (Loehman et al. 2011b). Recent modeling
efforts have shown that whitebark pine might be maintained
on the landscape in the future, provided that projected
increases in large, stand-replacement fires do occur and cre-
ate large, competition-free burned areas (Clark et al. 2017;
Loehman et al. 2011b). If tree dispersal enables range shifts
to occur, this will lead to a new northern distributional range
of whitebark pine (Hamann and Wang 2006; McKenney
et al. 2007). Moreover, whitebark pine shows promise for
being maintained in the Northern Rockies because of high
levels of genetic diversity (Mahalovich and Hipkins 2011;
Richardson et al. 2002), moderate to high heritabilities in
key adaptive traits, demonstrated blister rust resistance
(Hoff et al. 2001; Mahalovich et al. 2006), minimal inbreed-
ing (Bower and Aitken 2007; Mahalovich and Hipkins
2011), and generalist adaptive strategies.

Future climates may enhance growth of whitebark pine
diameter and height and decrease mortality, especially in
mesic seral whitebark pine forests. Earlier growing seasons
with ample moisture, such as those projected for the up-
per subalpine forests, will result in increased productivity
and greater growth. Longer, warmer growing seasons may
also result in higher productivities and greater biomass,
especially considering the high amounts of precipitation that
currently fall in upper subalpine forests. The abundant mois-
ture may enable longer growing seasons at high elevations.
Increased biomass could result in higher growth rates for
timber production and forage, especially in the widespread
higher mountain areas where cold, not moisture, limits tree
growth, creating potential for the inclusion of whitebark
pine in the timber base. Increased biomass could also foster
more intense, severe fires, and maybe insect and disease
outbreaks, but more importantly, the increased biomass
will probably increase cone crop abundance and frequency.
However, this increased production may also heighten
competitive interactions between whitebark pine and its
associated species, thereby favoring the more shade-tolerant
individuals in the absence of disturbance. If disturbances in-
crease, however, the more fire-tolerant whitebark pine might
inherit the landscape.

Whitebark pine cone and seed crops could be both
adversely and beneficially affected by climate change. In
high-elevation, historically cold environments, increased
temperatures may increase growing seasons and thereby
increase potential for more frequent and more abundant
cone crops with greater numbers of seed. This is important
because decreases in species abundance and associated cone
production may be offset by climate-driven increases in
cone crops. Warming and variability in climate will also af-
fect the phenology of cone crops, but these impacts may be
minimal as plants adapt to the new conditions. Some predict
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higher frost mortality of emerging cones due to earlier onset
of the growing season, coupled with high daily temperature
variability (Chmura et al. 2011). Others suggest that cone
crops will be reduced in the future because of high tree
stress from drought, resulting in less frequent and abundant
cone crops. Many expect that changes in climate variability
and timing will have low impact on species reproduc-

tion because whitebark pine is both drought-tolerant and
cold-tolerant.

Perhaps the life stage most critical for whitebark pine
is regeneration, where most species, but especially trees,
are most susceptible to shifts in climate (Solomon and
West 1993). The microsite conditions needed for success-
ful regeneration are so demanding that seed germination,
especially from seeds that are wind dispersed, is rarely
successful (McCaughey and Tomback 2001). Bunn et
al. (2003) emphasized the importance of accounting for
microsite variability in assessing climate change response;
high-elevation microsite changes, coupled with increased
fire activity, could increase whitebark pine regeneration and
growth as climates change. The depth and duration of snow
cover often governs high-elevation tree regeneration. Most
years are moist enough for regeneration, but snow remains
on sites for a long time, thereby limiting the number of days
that a seedling can actually photosynthesize and grow. If
temperatures increase, then snow might melt earlier, giving
more time for seedlings to survive and grow. Warm years
often result in waves of regeneration and can be dated in
upper subalpine ecosystems by using seedling and sapling
tree ages (Little et al. 1994; Rochefort et al. 1994). Recent
observations of invasions of subalpine meadows and balds
by subalpine fir, alpine larch, and spruce are a testament to a
high number of sequential warm years over the last decade,
which have facilitated regeneration in the high mountain
landscape. Moreover, there is often abundant precipitation
in upper subalpine settings, and projections for the future
indicate roughly the same amount, so seedling mortality
from drought might continue to be minimal.

Many climate change studies consistently project drier
conditions in the range of whitebark pine, which would
result in large increases in the annual number and severity of
wildfires and area burned (Flannigan et al. 2009; Krawchuk
et al. 2009; Marlon et al. 2009). With increased fire, white-
bark pine will have a unique opportunity to maintain its
range or even increase in distribution in the future because
it has bird-mediated seed dispersal mechanisms that can
disseminate seed great distances into large, severe burns,
well before wind can disperse the seeds of its competitors
(Tomback 1977, 1982, 1989; Lorenz et al. 2008). Whitebark
pine also has morphology that enables it to survive low-
to moderate-severity fires (Ryan and Reinhardt 1988).
Therefore, whitebark pine is uniquely positioned as a spe-
cies that can increase under the more frequent fire regimes
that result from warming climates. Further, nutcrackers may
be harvesting seeds from trees that have survived blister
rust, so there is some chance that seeds from unclaimed
nutcracker caches may become blister rust-resistant trees. It
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is entirely possible that as long as wildland fire creates areas
where birds will cache seeds and resultant seedlings can
grow without competition, whitebark pine will continue to
thrive throughout its range.

Current mountain pine beetle outbreaks are killing more
whitebark pine than historical records indicate, and these out-
breaks are probably a result of warmer winter temperatures
that facilitate expansion of and establishment of beetle popu-
lations in the higher elevation whitebark pine zone (Logan
and Powell 2001; Logan et al. 2003). A warmer climate may
also accelerate the spread of blister rust (Koteen 1999).

In summary, whitebark pine is not expected to do well
under future climates, not because it is poorly adapted to
shifts in climate regimes, but rather because it is currently
undergoing major declines from the exotic disease white
pine blister rust that preclude its immediate regeneration in
future burned areas. Moreover, the declines from white pine
blister rust and mountain pine beetle have served to reduce
whitebark pine populations to severely low levels, and now
the nutcracker is acting more as a seed predator than a seed
disperser (Keane and Parsons 2010). Climate shifts will
only exacerbate this decline and complicate restoration ef-
forts. Whitebark pine will be highly exposed to any climate
changes because of its (1) confined distribution to the upper
subalpine environments, (2) severely depressed populations,
and (3) lack of ability to regenerate when populations are
low because of nutcracker predation. The species has the
genetic capacity to overcome both white pine blister rust
and new climates to thrive over the next century, but only
with extensive restoration efforts.

Subalpine Fir
Autecology

Subalpine fir (4bies lasiocarpa) grows in the coolest
and wettest forest areas of the western continental United
States (Alexander et al. 1990). Although widely distributed,
it grows within a narrow range of mean temperatures (25 to
40 °F); however, January temperatures average 5 to 25 °F.
In contrast with other subalpine species, cool summers, cold
winters, and deep winter snowpack are more important than
precipitation in determining where subalpine fir grows.

Subalpine fir occupies the lower valleys to upper sub-
alpine zone in the Northern Rockies. In the lower valley
bottoms and footslopes, it is often associated with grand fir,
western larch, Douglas-fir, western redcedar, and western
white pine (Pfister et al. 1977). At the mid-subalpine, it
is often associated with lodgepole pine, Douglas-fir, and
Engelmann spruce; at the upper subalpine, it is associated
with whitebark pine, alpine larch, mountain hemlock, and
Engelmann spruce (Arno 2001). In the Rocky Mountains,
subalpine fir is commonly found with Engelmann spruce,
and the two together are often called spruce-fir forests
(Moran-Palma and McTague 1997). The subalpine fir habi-
tat types are probably the most common forest habitat types
in the Northern Rockies (Pfister et al. 1977).
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Subalpine fir is shade-tolerant, and is often the most
shade-tolerant of all its associates, except for grand fir and
mountain hemlock in isolated cases (Alexander et al. 1990;
Minore 1979) (table 6.3). Although subalpine fir can grow
under nearly all light conditions, seedling establishment
and early survival are usually favored by partial shade
(Knapp and Smith 1982). In the absence of grand fir and
mountain hemlock, subalpine fir will survive under closed-
forest conditions with less light than Engelmann spruce.

It may not compete well with the spruces, lodgepole pine,

or interior Douglas-fir in the lower subalpine when light
intensity exceeds 50 percent of full shade. Subalpine fir is
quite intolerant of drought, and many seedlings can be killed
if droughts are overly long or deep. The species is highly
tolerant of frosts and can remain alive in seasonally wet
conditions. Subalpine fir is usually the climax tree species

in most subalpine areas of the Northern Rockies, although it
sometimes shares climax status with spruce.

Subalpine fir is a prolific seed producer, often having
large cone crops every 2 or 3 years (Alexander et al. 1990).
Seeds usually drop in late fall, over snow in most places.
The species is restricted to cold, humid habitats because
of the low tolerance of seedlings to high temperatures and
dry conditions (Knapp and Smith 1982); newly germinated
subalpine fir seedlings rarely tolerate high solar radiation,
and they are susceptible to heat girdling and drought (Little
1992). Seedlings are also killed or damaged by spring
frosts, competing vegetation, frost heaving, damping off,
snowmold, birds, rodents, and trampling and browsing
by large animals, but losses are not different than for any
of the common associates of the species (Alexander et al.
1990). However, the abundant seedfall of fir, coupled with
cool conditions in the subalpine, often create dense mats of
seedlings in stands that contain partial shade and overwhelm
seedling establishment of all other species. Subalpine fir
has average genetic diversity for a Northern Rockies tree
species and weak geographic differentiation. There are
strong clinal variations in phenological and morphological
characteristics.

Disturbance Interactions

Subalpine fir is highly susceptible to fire damage because
of thin bark, low-hanging dense foliage, and shallow roots
(Ryan and Reinhardt 1988). Even the lowest severity fire
can cause high mortality in subalpine fir. Frequent fires
often eliminate subalpine fir from both the overstory and
understory, thereby maintaining the more fire-adapted spe-
cies of lodgepole pine, whitebark pine, western larch, and
western white pine (Little et al. 1994; Murray et al. 1997;
Wadleigh and Jenkins 1996). Invariably, some fir trees sur-
vive even the most severe fires in refugia, thereby providing
a seed source for future stands (Murray et al. 1998; Veblen
et al. 1994).

In spruce-fir forests, the most important insect pests
are the western spruce budworm and western balsam bark
beetle. The silver fir beetle (Pseudohylesinus sericeus)
and the fir engraver may at times be destructive, but only
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in local situations in the Northern Rockies. Fir broom rust
(Melampsorella caryophyllacearum) and wood-rotting fungi
are responsible for most disease losses, but root and butt rots
may be important locally. Broom rust and wood rots weaken
affected trees and predispose them to windthrow and
windbreak. Decades of intense competition, coupled with a
period of moderate to severe drought, often cause extensive
mortality in subalpine fir stands. These high mortality events
are often attributed to a complex of disease, insects, and
other agents, but the underlying cause is low vigor in exist-
ing trees from overcompetition.

Historical and Current Conditions

Effects of 100 years of fire exclusion have not yet be-
come manifest in most subalpine fir ecosystems because of
historically infrequent fire and slow successional advance-
ment. However, abundance of subalpine fir cover types has
increased in many subalpine and upper subalpine landscapes
(Keane et al. 1994), and many stands that had low subalpine
fir components now have fir dominating the understory and
encroaching in the overstory. Increased stand density has
resulted in many stands becoming stressed from competi-
tive interactions, heightening susceptibility to disturbances.
Recent dry, droughty conditions have led to high-elevation
subalpine fir mortality of undetermined origin called sub-
alpine fir die-off, usually attributed to a complex of causal
mechanisms such as drought, greater competition, higher
temperatures, and increasing diseases. Therefore, as fire is
progressively kept off the subalpine landscape, the subalpine
fir stands that replaced the pine communities will progres-
sively decline in vigor and be more susceptible to fire,
insects, and diseases. A concern is that if these overly dense,
unhealthy stands continue to escape fire, the seed sources
of the fire-adapted pines will be eliminated, and high eleva-
tion sites may be converted to grass and shrublands (Keane
2001). Another concern is that as fire is excluded from these
dense forests, canopy and surface fuels will accumulate to
such levels that, when they are burned, fires will be of ex-
tremely high severities (Keane 2001; Morgan et al. 1994b).

Climate Change Responses

It is challenging to predict responses of subalpine fir to
future climate change. It is a species that is highly adapted
to moist growing conditions, so it is likely to respond
poorly to increasing temperatures and drought (Alexander
et al. 1990). On the other hand, it is a fierce competitor
that can outcompete all subalpine tree species for shade,
and it is a species that has a diverse range throughout the
Northern Rockies. Subalpine fir could expand its range into
the treeline, become more or less productive in its current
range, and decline in productivity and occurrence in those
areas that become inhospitable for the species, presum-
ably the warmer, drier portions of its current range. Most
paleo-reconstructions over the Holocene show subalpine
fir dominated during periods of cold, moist conditions but
declined in extent as climates warmed (Brunelle et al. 2005;
Whitlock 1993, 2004). Hamann and Wang (2006) projected
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that future losses of subalpine fir from drought will exceed
gains from range expansion, resulting in a 97-percent
decrease in the range of the species in British Columbia.
Romme and Turner (1991) estimated major to minor losses
in subalpine fir in the future in the GYA, depending on
degree of warming, and Bell et al. (2014) modeled little
loss of subalpine fir in the Northern Rockies. Using SDM
techniques, Crimmins et al. (2011) estimated that the
subalpine fir/spruce zone would move upward in elevation
by 300 feet by 2050. Woodward et al. (1994) suggested
that subalpine fir will produce less frequent and lower cone
crops in the future. However, seedling establishment may
be the bottleneck for subalpine fir in the future; the species
needs long periods of high moisture for seeds to germinate
and seedlings to thrive (Urban et al. 1993), and years that
meet these conditions may be less frequent in the future in
the lower subalpine.

In those areas with abundant precipitation, longer
growing seasons and reduced snowpacks may increase
regenerative success of subalpine fir, especially in subalpine
areas where snow pack historically controlled regenerative
success (Means 1990; Urban et al. 1993). These areas con-
stitute most of the range of fir in the subalpine to treeline.
Little and Peterson (1991) found that most fir regeneration
occurred in low snow years because there were more
suitable microsites. Villalba et al. (1994) found subalpine
fir growth was positively correlated with increasing sum-
mertime temperature. Higher productivity in these subalpine
forests may also increase cone crops, tree growth, and
species densities. Denser stands may eventually result in
high competitive stress, making these fir stands even more
vulnerable to high mortality from insects, disease, and abi-
otic factors, and therefore less resilient. However, declines
in whitebark pine and lodgepole pine from beetle- and rust-
caused mortality may facilitate fir regeneration and growth,
resulting in more fir trees and more stands dominated by
subalpine fir.

Those Northern Rockies areas in high-elevation (treeline)
settings may have an increase in subalpine fir as the heavy
snow and cold conditions that precluded fir regeneration at
treeline become less frequent (Cayan et al. 2001; Rochefort
et al. 1994). However, the decline of whitebark pine trees
that act as nurse crops to facilitate subalpine fir establish-
ment may contribute to the inability of the fir to establish in
the high elevation settings. Establishment of populations at
the upper subalpine and treeline may be possible only when
fire is absent long enough to allow enough subalpine fir to
gain reproductive maturity; then sufficient seed can be dis-
persed over enough years to ensure suitable environmental
conditions for seedling establishment (Little and Peterson
1991; Little et al. 1994).

Increases in wildland fire would decrease subalpine fir
throughout the Northern Rockies, and those decreases would
be much more extensive and steeper than any resulting from
direct climate change effects. Frequent fires would favor
nearly all of the associates of subalpine fir because it is the
least adapted to survive fire (Arno and Hoff 1990; Keane
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2001). Little et al. (1994) found limited subalpine fir regen-
eration over 30 years after a fire at Mount Rainier, but those
regeneration events that did occur happened after low snow
years. Heusser (1998) found that subalpine fir increased in
growth with warmer temperatures during the spring of the
growth year, but growth was negatively correlated with high
summer temperatures the previous years.

In summary, the future of subalpine fir will depend
on both the future level of fire and the degree of climatic
warming. Subalpine fir is likely to be a species that shifts
across the high mountain landscape, with gains in expansion
balancing losses of contraction (caused directly by changes
in climate). However, future increases in fire, disease, and
insects may limit its abundance. Fir is an aggressive com-
petitor, so gains in the species through advanced succession
in the upper subalpine will probably be balanced by or
exceed losses from the drier, lower subalpine caused by fire,
drought, and pathogens.

Engelmann Spruce
Autecology

Engelmann spruce (Picea engelmannii) is widely distrib-
uted in the western United States and is a major component
of the high-elevation Northern Rockies forests (Alexander
and Shepperd 1990). It grows in humid climates with long,
cold winters and short, cool summers, and occupies one of
the highest and coldest environments of the western United
States. The range of mean annual temperature in which this
species occurs is narrow considering its wide distribution.
Engelmann spruce grows best on moderately deep, well-
drained, loamy sands and silts and clay loam soils from a
variety of volcanic and sedimentary materials. It also grows
well on glacial and alluvial soils where the water table is
accessible.

Engelmann spruce is rated as shade tolerant, but it is less
shade tolerant than its major associate, subalpine fir (Minore
1979) (table 6.3). It is more shade enduring than interior
Douglas-fir, western white pine, lodgepole pine, quaking
aspen, western larch, or ponderosa pine (Alexander and
Shepperd 1990). The species does not tolerate drought well
and it is perhaps the least adapted to drought conditions of
the subalpine tree species (Alexander and Shepperd 1990).
It is highly frost tolerant and one of the few upper subalpine
species that can tolerate seasonal standing water. It is associ-
ated with mycorrhizae but does not seem to be dependent on
the fungi for survival. It is wind pollinated and its seeds are
wind dispersed.

In the Northern Rockies, Engelmann spruce is mostly
associated with subalpine fir but grows with many other
tree species, including mountain hemlock, whitebark pine,
western larch, Douglas-fir, quaking aspen, lodgepole pine,
limber pine, and western hemlock. In most upland subalpine
Northern Rockies sites, Engelmann spruce is a minor spe-
cies associated with subalpine fir in later seral communities.
It is often found in the upper subalpine as scattered indi-
viduals with the greatest height and diameter (Arno 2001).
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Pure Engelmann spruce communities are found in wet areas
and riparian settings, and in severe frost pockets where all
frost-sensitive tree species are excluded.

Spruce seeds germinate in a variety of substrates, in-
cluding duff, litter, and decomposed humus, and seedlings
have best initial survival on duff seedbeds, rather than on
mineral soil. Engelmann spruce has low tolerance to high
temperatures and drought, especially in the first 5 years of
establishment. Due to its slow initial root penetration and
sensitivity to heat in the succulent stage, drought and heat
girdling kill many first-year spruce seedlings. Drought
losses can continue to be significant during the first 5 years
of seedling development, especially during prolonged
summer dry periods (Alexander and Shepperd 1990). After
establishment, adequate soil moisture, cool temperatures,
and shade favor survival.

Engelmann spruce is similar to subalpine fir in that it has
an average genetic diversity with weak geographic differen-
tiation. It is considered intermediate in its adaptive strategy,
being neither a generalist nor a specialist. Populations show
habitat specificity. Engelmann spruce has a high outcrossing
rate and possesses the ability to cross with white spruce
(Picea glauca).

Disturbance Interactions

Engelmann spruce is highly susceptible to fire injury and
death, but some spruce survive severe burns because of their
large size (Bigler et al. 2005; Wadleigh and Jenkins 1996).
The species can survive fire better than its primary associate,
subalpine fir (Ryan and Reinhardt 1988). Surviving large
spruce trees can provide abundant seed in burned areas, but
rarely do these seeds germinate to create forests dominated
by Engelmann spruce; these spruce-dominated forests occur
only in seasonally wet habitats (Pfister et al. 1977).

Engelmann spruce is susceptible to windthrow, especially
after any cutting in old-growth forests. The spruce beetle
(Dendroctonus rufipennis) is the most serious insect pest
of Engelmann spruce. It is restricted largely to mature and
overmature spruce, and epidemics have occurred throughout
recorded history. The western spruce budworm also attacks
Engelmann spruce.

Historical and Current Conditions

It is difficult to determine recent trends in Engelmann
spruce forests across the Northern Rockies because the spe-
cies is rarely the dominant component in a stand. One would
expect that advancing succession under a century of fire
exclusion has increased spruce in the subalpine and upper
subalpine. However, logging and fire have reduced spruce
in lower elevation areas, where it occurs in seasonally wet
areas and frost pockets.

Climate Change Responses

Similar to subalpine fir, some losses of Engelmann
spruce are likely in the drier portions of its range, especially
in those seasonal moist sites that will be mostly dry in the
future. Liang et al. (2015) found that major mortality events
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have occurred in Engelmann spruce over the last 20 years
because of increased drought, presumably related to chang-
ing climate. Alberto et al. (2013) found that this species had
lower growth the year following warm, dry years in the U.S.
Cascades. Using SDMs, Morales et al. (2015) projected a
47 percent contraction in Engelmann spruce in the northern
Rocky Mountains by 2060, and Hamann and Wang (2006)
projected a 27-percent decrease in the range of Engelmann
spruce in British Columbia by 2050. Gray and Hamann
(2013) estimated Engelmann spruce would move 230 miles
northward and 550 feet higher in elevation in the Northern
Rockies by 2050. Using SDMs for the southwestern United
States, Notaro et al. (2012) projected that Engelmann spruce
would disappear by 2050. Using gap modeling, Burton

and Cumming (1995) projected a precipitous collapse of
Engelmann spruce in the mesic forests of British Columbia.
Coops and Waring (2011) used mechanistic modeling

to simulate a retraction in spruce range of more than 50
percent.

Engelmann spruce may be the first species to become
established in high elevation areas where snow precluded
conifer regeneration historically, but where there now may be
a seasonal wetland or subalpine wet meadow (Schauer et al.
1998). Jump and Pefiuelas (2005) note that Engelmann spruce
has the genetic capacity to adapt to large swings in climate
in situ by taking advantage of shifts in microsites. Due to the
great seed dispersal ability and tall stature of the species, it is
able to disseminate into previously unforested areas, such as
glades, meadows, and balds, to expand its range. Whitlock
(2000) found increased spruce regeneration during the warm-
est periods of the past several centuries, and Luckman et al.
(1984) found Engelmann spruce growth positively correlated
with increasing summertime temperature. Various SDM ap-
proaches project minor changes in the spruce-fir subalpine
zone (Bell et al. 2014; Crimmins et al. 2011).

Engelmann spruce is poorly adapted to fire, and thus
major declines are expected with the projected increases in
area burned. But these declines may be offset by increased
regeneration on burned areas with mineral soil substrates.
Continued fire suppression activities may maintain spruce
on the landscape, but this species may persist at lower
abundance because of increased drought. Fire suppression
may also ensure the demise of Engelmann spruce in that,
when fires eventually burn, the severities may be so great
that they kill all spruce seed sources. In addition, Bentz et
al. (2010) noted that future climates are likely to be more
conducive to the spruce beetle, and Stout and Sala (2003)
suggested that future climates may foster more spruce bud-
worm events, leading perhaps to further declines in spruce.

In summary, Engelmann spruce is a species that is
highly sensitive to climate but likely to persist in future
Northern Rockies landscapes because of the superior
ability of the species to seed into new areas, especially
burned areas, and ability to remain in the high mountain
landscape. Projected increases in subalpine productivity
will also serve to keep spruce on the Northern Rockies
landscape.

USDA Forest Service RMRS-GTR-374. 2018

EFFECTS OF CLIMATE CHANGE ON FOREST VEGETATION IN THE NORTHERN ROCKIES REGION

Mountain Hemlock
Autecology

Mountain hemlock (7suga mertensiana) is usually found
on cold, wet, snowy upper subalpine sites, where it grows
slowly and sometimes lives to be more than 800 years old.
The species is apparently limited by late snowmelt, short
growing seasons, and cool summer temperatures through-
out much of its range in the Pacific Northwest. Earlier
snowmelt, higher summer temperatures, and lower summer
precipitation in the lower portions of its range produce
conditions under which growth is limited (West et al. 2009).
Areas occupied by mountain hemlock generally have a cool
to cold maritime climate that includes mild to cold winters,
a short, warm to cool growing season, and moderate to high
precipitation. The presence of mountain hemlock in the
Rocky Mountains is closely correlated with the eastward
penetration of moist maritime air masses (Woodward et al.
1994). Mountain hemlock occurs in mixed upper subalpine
stands in the western portions of the Northern Rockies,
often relegated to the moist north slopes.

Mountain hemlock is considered highly tolerant of
shade and other forms of competition, and it is probably
more tolerant than any of its Northern Rockies associates,
even subalpine fir in some places (Minore 1979). Mountain
hemlock is considered a minor climax species in most
of its limited habitats; mountain hemlock often succeeds
lodgepole pine or subalpine fir (Means 1990). The species
has a low tolerance to drought but a high tolerance to frost
and standing water. It is wind pollinated, and the seeds are
wind dispersed.

Mountain hemlock has large cone crops about every 3
years. It reaches reproductive maturity quickly by around
20 years of age, and most of the seedfall occurs during
the fall months. It has average genetic diversity and weak
geographic differentiation, but moderate population
differentiation.

Disturbance Interactions

Mountain hemlock is considered susceptible to fire be-
cause it often retains branches almost to the ground, grows
in clusters, and often has shallow roots spread throughout
well-developed forest floors that dry out in the summer
(Dickman and Cook 1989). It has thick bark and can
withstand some low-intensity fire, but overall, it will often
succumb to fire damage over time. Fire is a rare visitor to
these mesic, cold stands, so any increase in fire frequency
will reduce mountain hemlock populations.

The most striking damage to mountain hemlock is prob-
ably that caused by laminated root rot. This fungus spreads
from centers of infection along tree roots so that all trees
are killed in circular areas that expand radially. Mountain
hemlock is the species most susceptible to root rot in sub-
alpine forests (Means 1990).
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Historical and Current Conditions

There have been few evaluations of mountain hemlock
distributions in the Northern Rockies, and thus it is dif-
ficult to gauge trends in this species over the last century.
The fire exclusion era has advanced succession in those
subalpine sites where mountain hemlock can be found,
thereby increasing the numbers and density of the species.
These dense forests are probably not currently stressed
because of high productivity in these areas. Mountain
hemlock has a limited range in the region, so any signifi-
cant warming and drying could drive the species to local
extinction.

Climate Change Responses

With warming climate in western North America, exist-
ing mountain hemlock forests will probably increase in
productivity, especially in the upper and lower elevational
boundaries of the mountain hemlock zone (Means 1990).
Near Mount Baker, Washington, ring width of mountain
hemlock increased with increasing monthly temperatures in
the preceding 12 months, decreasing winter precipitation,
and decreasing snow depth, implying that productiv-
ity should increase with predicted temperature increases
(Woodward et al. 1994). Graumlich et al. (1989) estimated
that productivity increased 60 percent in the last century in
four high-elevation stands in Washington, three of which
contained 48 to 96 percent mountain hemlock. They related
this increase most strongly to the increase in growing
season temperature during this period (about 2.7 °F). West
et al. (2009) projected increases in growth and productiv-
ity of mountain hemlock throughout much of its range in
Washington and northern Oregon, but increased summer
drought stress will reduce productivity in mountain hemlock
forests of southern Oregon and near the lower elevation lim-
it of the species. Peters and Lovejoy (1992) estimated that
if mean annual temperatures increase 4.5 °F, the mountain
hemlock zone may be shifted 1,800 feet higher in elevation
and decrease as a proportion of forestland from 9 percent to
2 percent in Oregon. An increase of 9.0 °F may induce an
upward shift of 3,700 feet, which is above all but the tallest
peaks, effectively eliminating the species from the Northern
Rockies (Means 1990). Woodward et al. (1994) speculated
the mountain hemlock will produce less frequent and lower
cone crops in the warm future.

In summary, the high productivity of mountain hemlock
sites in the western Northern Rockies may mitigate the
potential decline of mountain hemlock over the next 50
years. Local shifts of the species are likely to occur where
it is established in droughty low-elevation areas of Idaho
and western Montana, but overall, the species might be
somewhat stable under climate warming. It might even
increase in productivity and make range expansions into the
lower treeline. The species is not highly exposed to climate
changes because of its limited range in the region and its
somewhat confined niche. The magnitude of climate effects
on mountain hemlock responses will be great, but mostly
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positive, and the likelihood of these effects has a high uncer-
tainty, primarily because of the uncertain role that fire will
play in the dynamics of mountain hemlock populations in
future landscapes.

Alpine Larch
Autecology

Alpine larch (Larix lyallii) is a deciduous conifer that
occupies the highest and most remote environments in
the Northern Rockies, growing in and near treeline on
high mountains across the inland Pacific Northwest (Arno
1990). In the Rocky Mountains, alpine larch extends from
the Salmon River Mountains of central Idaho northward to
Lake Louise in Banff National Park, Alberta (Arno 1990).
Within this distribution, alpine larch is common in the
highest areas of the Bitterroot, Anaconda-Pintler, Whitefish,
and Cabinet Ranges of western Montana. It is also found in
lower abundance in isolated stands atop many other ranges
and peaks in western Montana and northern Idaho (Arno
and Habeck 1972). Alpine larch grows in cold, snowy, and
generally moist climates where for more than half of the
year, mean temperatures are below freezing. Mean annual
precipitation for most alpine larch sites is between 32 and
75 inches, the larger amount being more prevalent near the
crest of the Cascades; most stands in the Montana Bitterroot
Range receive 39 to 59 inches. About 75 percent of this
precipitation is snow and sleet. Ridgetop alpine larch stands
are exposed to violent winds; most alpine larch stands annu-
ally experience winds reaching hurricane velocity or more,
especially during thunderstorms or during the passage of
frontal systems.

Alpine larch is perhaps the most drought-susceptible
conifer in the Northern Rockies because of its reliance on
subsurface water during the dry summer months (Arno
1990). It achieves its best growth in high cirque basins and
near the base of talus slopes where the soils are kept moist
throughout the summer by aerated seep water. It can also
tolerate boggy wet meadow sites having very acidic organic
soils. The species is most abundant on cool, north-facing
slopes and high basins, where it forms the uppermost band
of forest. It also covers broad ridgetops and grows locally
under relatively moist soil conditions on south-facing
slopes. The Northern Rockies may have a droughty period
for a few weeks in late summer, but the effect is minor in
most alpine larch sites; however, dry surface soils may pre-
vent seedling establishment in certain years.

Alpine larch is the most shade-intolerant conifer growing
at high-elevation Northern Rockies sites and is classified
as very intolerant (Minore 1979) (table 6.3). Its evergreen
associates attain their best development in forests below
the lower limits of larch. An exception is whitebark pine,
another treeline inhabitant, which is most abundant on
warm exposures and microsites and thus tends to comple-
ment rather than compete with larch. Alpine larch grows
mostly in pure stands, but it can be found with whitebark
pine, subalpine fir, and Engelmann spruce near their upper
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limits. Alpine larch roots extend deep into fissures in the
rocky substrate. Trees are well anchored by a large taproot
and large lateral roots and are very windfirm. Alpine larch

is easily replaced by subalpine fir in most upper subalpine
sites, but the species can act as a climax species in the lower
treeline (Arno and Habeck 1972).

Alpine larch is one of the few deciduous conifers in the
Northern Rockies, and as a result, it has a high capacity to
survive wind, ice, and desiccation damage during the winter
because the needles are off the trees. The species also has an
evergreen sapling stage that allows it to quickly take advan-
tage of the short growing season in the early summer after
snowmelt (Arno and Habeck 1972). Alpine larch seedlings
are frost-tolerant. Mature trees produce good cone crops
every fifth year, and these seeds drop in early fall. It is as-
sumed that alpine larch has an average genetic diversity and
weak geographic differentiation, but little genetic work has
been done on this species.

Disturbance Interactions

Fire is an occasional but localized visitor in alpine larch
stands, causing injury or death in most cases. Large fires are
infrequent in the cool, moist, and rocky sites where alpine
larch occurs, and fire spreads poorly on these sites because
of light and discontinuous fuels. Unlike its thick-barked,
fire-resistant relative western larch, alpine larch has thin
bark, has low resistance to surface fire, and often dies after
low-intensity fires (Ryan 1998).

Powerful winds in alpine larch stands often damage
crowns, in conjunction with loads of clinging ice or wet
snow (Arno and Habeck 1972). Nevertheless, the deciduous
habit and supple limbs of this tree make it more resistant
to wind damage than its associates. Death usually occurs
when advanced heart rot has so weakened the bole that high
winds break off the trunk. Brown trunk rot produces the
only conks commonly found on living trunks (Arno 1990);
this fungus is evidently the source of most heart rot. Snow
avalanches and snowslides are an important source of dam-
age in many stands, but again, this species is better adapted
to survive these disturbances than its evergreen associates.

Historical and Current Conditions

This species is rarely studied, and as a result, very little is
known about its population trends in the Northern Rockies.
Our best guess is that alpine larch populations have stayed
roughly the same across most of its range in the region over
the last 100 years. There have been some losses from fire in
some areas, especially the Bitterroot Mountains of Montana,
but there have also been gains. Recent anecdotal observa-
tions indicate that alpine larch has been increasing in ribbon
forests, glades, and high-elevation open areas where snow
accumulated historically; over the last two decades, these
areas have been clear of snow enough of the year to foster
alpine larch regeneration.
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Climate Change Responses

We think alpine larch has a high potential to decrease in
both productivity and abundance with climate change. On
the one hand, alpine larch is a shade- and drought-intolerant
species, so it does not do well in areas of increasing dry-
ness and competition (Arno and Habeck 1972). Its high
demand for subsurface water during the growing season is
apparently the main factor limiting its range in the Northern
Rockies (Arno 1990), making it highly susceptible to in-
creasing drought in the future. Alpine larch growth is highly
correlated with high snowpack, especially in April, which is
usually indicative of high subalpine moisture throughout the
year (Colenutt and Luckman 1991; Peterson and Peterson
1994). The lack of summertime groundwater would be
more likely in the southern part of the species range in the
Northern Rockies, specifically western Montana and central
Idaho.

On the other hand, alpine larch can produce copious
amounts of seed that may land on upper subalpine and tim-
berline areas that were historically covered with snow for
most of the year but in the future may be sufficiently snow-
free to allow wind-dispersed seed to germinate and grow
into viable seedlings. There is ample anecdotal evidence
documenting alpine larch encroachment into ribbon forests,
glades, and snowfields. These seedlings could become
mature trees, provided there is sufficient moisture. With
higher rates of productivity in a warming climate, seedlings
and trees may have greater growth and cone production.
However, short-term increases in alpine larch regeneration
may be offset by the high variability in drought in the up-
per subalpine, which may eventually cause declines in the
larch. Another possibility is that the more shade-tolerant
subalpine conifers, such as spruce and subalpine fir, might
become established in these new open areas and outcompete
alpine larch for dominance. Along those same lines, the
more drought-tolerant whitebark pine may also become es-
tablished in the snow-free areas and survive the anticipated
long droughts.

Although alpine larch apparently lacks the morpho-
logical, ecophysiological, and genetic capacity to adapt to
new environments, it does have the ability to genetically
intergrade with western larch to produce hybrids that may
be more tolerant of drought and competition (Carlson et
al. 1990). Moreover, its superior seed dispersal capability
may allow it to become established in treeline areas made
environmentally favorable by climate change, mainly from
decreasing snowpacks and higher temperatures. These areas,
however, may be significantly smaller and more isolated
than areas in its current range, where it will decline because
of lack of water.

Alpine larch is not well adapted to survive wildland fire
(Arno 1990), and as its existing range becomes drier and
fires become more probable, it is expected that more alpine
larch will burn, providing there are sufficient fuels. Those
upper subalpine forests that are co-dominated by whitebark
pine and alpine larch are probably the most susceptible of
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subalpine larch habitats to increases in fire. Rocks, scree,
and fuel-free areas protect many alpine larch communities,
so it may be years before fire, or the more shade-tolerant
competitors, invade pure alpine larch woodlands (Arno
and Habeck 1972). Although alpine larch does not seem to
be impacted by major insects and pathogens (Arno 1990),
future climates may increase the possibility that insects and
diseases that were relatively minor in the past could become
more significant in the future, especially in timberline en-
vironments where damaging agents were depressed by cold
(Woods et al. 2010).

In summary, alpine larch is one of the most susceptible
tree species in the Northern Rockies region to climatic shifts
that result in increasing drought and fire. Its exposure to
climate change is likely to be high because upper subalpine
areas may experience the greatest climatic change (Luce
et al. 2013). Due to its specialized habitat, alpine larch has
the highest risk for major range shifts, and impacts to the
species may be great if there are insufficient environments
created upslope.

Green Ash
Autecology

Green ash (Fraxinus pennsylvanica) is the most widely
distributed of all the American ashes (Kennedy 1990),
but primarily occurs in the eastern and central United
States. In the Northern Rockies, green ash is restricted to
the northern Great Plains, which is the northwestern edge
of its range (Girard et al. 1987; Lesica 2009). Naturally a
moist bottomland or streambank tree, it is well adapted to
climatic extremes and has been widely planted in the Plains
States and Canada. It is probably the most adaptable of all
the ashes, growing naturally on a range of sites, from clay
soils subject to frequent flooding and overflow, to sandy or
silty soils where the amount of available moisture may be
limited. In the northern Great Plains, green ash grows best
on fertile, moist, well-drained alluvial soils, primarily along
river bottomlands and woody draws. It also occurs in broad
upland depressions and ridges, which have subsurface water
early in the growing season (Girard et al. 1987; Lesica 2003;
Lesica and Marlow 2013). Natural stands of green ash are
almost completely confined to bottomlands, but the species
grows well when planted on moist upland soils. It lines the
watercourses in the western parts of its range where rainfall
is insufficient to support upland growth.

Green ash varies from intolerant to moderately shade-
tolerant in woody draws. It is an early-seral species,
colonizing alluvial soils. It regenerates from seed when ex-
otic grass (which inhibits germination through competition
for soil moisture) is absent or has low cover (Lesica 2003;
Lesica and Marlow 2013). It also regenerates vegetatively
through stump sprouting. Uresk and Boldt (1986) reported
90-percent sprouting success following trunk removal in an
experimental study in North Dakota. Lesica (2009) found
that stump sprouts can achieve full tree height in 20 years.
Although green ash is generally drought-tolerant, prolonged
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drought may affect regeneration success because it is at

the most arid edge of its range (Severson and Boldt 1978).
Kennedy (1990) found that a population from the arid,
northwestern part of the green ash range was more drought-
resistant than one from the moister central Great Plains and
northeast.

Disturbance Interactions

Green ash is easily killed by fire, but stumps of most
size classes of green ash sprout readily after both fire and
mechanical trunk or stem removal (Lesica 2009). The
species has several insect and disease agents; it is particu-
larly susceptible to white stringy heartroot (Perenniporia
fraxinophila), which weakens the plant and makes it more
susceptible to wind or ice breakage (Lesica and Marlow
2013).

Historical and Current Conditions

Very little is known about the range expansion or con-
traction of green ash. However, green ash in the Northern
Rockies is at the northwestern (most arid) edge of its range
(Lesica 2009), and evidence suggests that many of the green
ash communities on the western fringe of the northern Great
Plains are declining (Boldt et al. 1978; Lesica 1989, 2001).

Climate Change Responses

Green ash has a broad ecological amplitude and can
survive droughty conditions, but it grows optimally on moist
sites. As soil moisture declines with a warmer, drier climate,
marginal sites may become less favorable for regeneration
and survival of young green ash trees. With increases in
fire frequency, there will probably be increased vegetative
regeneration and decreased production of seedlings fol-
lowing fire; fire often kills green ash seed on or near the
soil surface, restricting seedling recruitment to surviving
seed-producing trees. Green ash may benefit from increased
temperatures because seedling and mature tree growth
may increase with increasing soil temperatures. However,
those green ash populations associated with moist upland
microsites (e.g., northeast-facing residual snow-loaded
depressions) may suffer severe drought stress as snowpack
declines and melts sooner, and regeneration may decrease,
eventually resulting in loss of those communities.

Most mature green ash communities are somewhat
resistant to wildland fire, given that the species can sprout
afterward, so the projected increases in fire in the future may
not impact most green ash stands, especially the moist com-
munities. Low-severity fires might promote regeneration
by thinning stands and stimulating sprouting; green ash has
both root crown and epicormic sprouts, and both are typical
following fire events, especially in the woody draws and
riparian areas of the Great Plains. High-severity fires, how-
ever, may result in mortality. Browsing pressure on green
ash communities is also likely to increase with increased
drought, as upland grasses and forbs desiccate and senesce
earlier, or are replaced by invasive, less palatable species.
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Cottonwood
Autecology

Black cottonwood (Populus trichocarpa) is the largest of
the American poplars and the largest hardwood tree in west-
ern North America (Debell 1990). Narrowleaf cottonwood
(P. angustifolia) and black cottonwood grow primarily on
seasonally wet to moist open canopy sites (typically along
streams and rivers) in the western portions of the Northern
Rockies. Plains cottonwood (Populus deltoides) occurs in
eastern Montana and the Dakotas portion of the region. All
three species typically occupy fluvial surfaces along flood-
plains of streams and rivers.

Cottonwoods typically dominate riparian communities
on alluvial sites at low to mid-elevations. Various riparian
shrubs (e.g., willows [Salix spp.], alder [Alnus spp.)], birch
[Betula spp.], dogwood [Cornus spp.)]) and a variety of
graminoids and forbs occur in the understory of cotton-
wood stands (Merigliano 2005). Cottonwood is very shade
intolerant, and conifers (e.g., Douglas-fir, Rocky Mountain
juniper [Juniperus scopulorum], ponderosa pine, Engelmann
spruce, subalpine fir) may encroach and become dominant
in upland cottonwood forests (typically on river and stream
terraces). The species is also drought intolerant, and requires
an accessible water table (i.e., free, unbound water) dur-
ing most of the growing season (Rood et al. 2003). Older
cottonwood individuals can reach very deep water tables.
Plains cottonwood is probably more able to extract water in
the unsaturated zone once the water table has dropped below
the extent of the roots (Merritt et al. 2010). The finer tex-
tured soils in the northern Great Plains hold more water, but
it is harder to extract due to the finer soil texture. However,
plains cottonwood has apparently adapted to extract water
and is likely to be more resilient to drought than the other
species.

For all three species of cottonwood, high streamflows are
required for successful seedling establishment; the associ-
ated scouring action and deposition of fresh alluvium creates
optimal surfaces for germination. All species of cottonwood
are prolific seed producers, and the windborne seeds dis-
perse widely once the catkins have matured and seeds are
released. Seeds are viable for only about 2 weeks, and thus
timing of seed release and recession of flood flows is essen-
tial to successful germination (Malanson and Butler 1991).
Black and narrowleaf cottonwood seedlings are usually
established on a yearly basis, depending on flood frequency,
timing, and duration. Plains cottonwood establishment is
less frequent and more episodic because flows are more
variable in both magnitude and frequency. Scott et al. (1997)
found that about 72 percent of the plains cottonwoods along
the Missouri River of eastern Montana established after a
very large flood event (flow >1,800 cubic yards per second
with a recurrence interval of 9.3 years). High numbers of
seedlings become established in the first year after a flood,
but they naturally thin out up to several years later, if they
have not been scoured away by high flow events. The young
seedlings and saplings that survive are frequently injured
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and sometimes killed by unseasonably early or late frosts
(Debell 1990).

Disturbance Interactions

Cottonwood is mildly fire tolerant owing to its thick
bark, high branches, and foliage that is too moist to burn
in most years. It is considered a weak stump sprouter, but
unlike aspen, cottonwood rarely regenerates from suckers
(Brown 1996). Gom and Rood (1999) found that black and
narrowleaf cottonwood were more successful at coppice
(stump) sprouting and suckering than plains cottonwood.
Cottonwood is able to survive low-intensity fires in the short
term, but fire injuries can lead to the introduction of diseases
that weaken and perhaps kill the tree (Borman and Larson
2002).

Although several insects attack cottonwood, none has
yet been reported as a pest of economic significance. Tent
caterpillars (Malacosoma spp.) are the most important
foliar feeders that affect the Northern Rockies. At least 70
fungal species cause decay in cottonwood, but only 6 fungi
cause significant losses; 2 of these—brown stringy heart
rot (Spongipellis delectans) and yellow laminated butt rot
(Pholiota populnea)—cause 92 percent of the loss. Russian
olive (Elaeagnus angustifolia) and saltcedar (Tamarix ramo-
sissima) are aggressive invasive trees that often outcompete
plains cottonwood, particularly during or following drought
(Shafroth et al. 2002). These species, along with invasive
herbaceous species, are a threat to cottonwoods in general.

Historical and Current Conditions

Black cottonwood was common throughout the
Columbia River watershed in Lewis and Clark’s day, and
can still be found today, but it is greatly reduced in extent.

Climate Change Responses

As snowpack declines and melts earlier with warming
temperatures, there will be reduced, attenuated river flows
(loss of extreme high and low flows), along with a possible
shift in timing of peakflows to earlier in the season, before
cottonwood seed is viable for germination. These shifts
in timing, magnitude, and variability may result in both
decreased germination and establishment of young cot-
tonwoods (Whited et al. 2007). Human demand for water is
likely to increase in the future, which will probably result in
creation of additional diversions and reservoir expansions.
Any alteration of hydrologic flow regime (i.e., timing, mag-
nitude, and duration) will affect both floodplain interaction
and water available to cottonwoods, which in turn may re-
duce recruitment and establishment of seedlings (Auble and
Scott 1998; Beschta and Ripple 2005). Decreased stream-
flows and floodplain interactions may result in a conversion
of streamside vegetation from cottonwood to upland species,
along with reduced growth and regeneration (recruitment)
and increased mortality of cottonwood (Beschta and Ripple
2005). Upland conifers (e.g., Engelmann spruce, lodgepole
pine, and Douglas-fir) typically establish once the stream
and local water table have dropped, and they can shade out
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the remaining cottonwoods. In addition to competition from
upland conifers, there may be increased browsing pressure
on cottonwoods, which will further contribute to declines in
cottonwood regeneration and recruitment.

Plains cottonwood may be more persistent under a
changing climate because of greater plant-available soil wa-
ter in the unsaturated zone (as a result of finer textured soils)
in its habitat. Black and narrowleaf cottonwood typically
occur in coarser substrate, which will become much drier
as flows are lower and recede earlier than in the past, or are
attenuated due to diversions. Seedling and sapling mortality
may increase in these species. Plains cottonwood regenera-
tion occurs with episodic flooding, whereas black and
narrowleaf cottonwood regenerate with 1- to 3-year bankfull
flow return intervals (typically an annual recruitment cycle);
therefore, plains cottonwood will probably be better adapted
to irregular flows that may occur with climate change. Black
and narrowleaf cottonwood are likely to be at greater risk
to changing climate because of soil water characteristics in
their habitats and their narrow amplitude in terms of germi-
nation and flood events on specific fluvial surfaces.

Vegetation Types

Vegetation types are broad species assemblages that are
used to identify the geographic distribution of vegetation in
the Northern Rockies. Vegetation types are different from
species in that species can be a major to minor component in
a vegetation type, but vegetation types can be composed of
a number of species. Here we describe generally the likely
response of forest vegetation types in the Northern Rockies
to climate change. This section is less detailed than the sec-
tion on species because readers can refer to the individual
species for each vegetation type as presented in the previous
section.

Dry Ponderosa Pine-Douglas-fir Forests

Ecology

Dry ponderosa pine and Douglas-fir forests are the driest
forests in the Northern Rockies. These forests are relatively
rare in northern Idaho, more common in western Montana,
and prominent in central and eastern Montana where mois-
ture is most limited. They are often found at the foothills of
mountain ranges in the region, but also in extensive flatlands
bordering perennial grasslands and shrublands. Historically,
frequent fires often maintained pure to mixed ponderosa
pine woodlands and savannas in areas currently occupied by
this type. However, fire exclusion has led to increased tree
density and abundance of Douglas-fir, making these forests
susceptible to uncharacteristically severe fire.

Disturbance Interactions

These forests recover from disturbance by slowly shifting
from fire-tolerant pioneer species to less fire-tolerant and
shade-tolerant “climax” species over time. This successional
process can occur over 200 to 1,000 years. Ponderosa pine
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is often able to colonize the hot dry surface conditions

of a disturbed site. Over time, as it matures, it provides a
shaded environment where less heat-tolerant Douglas-fir
can establish. In a frequent low-severity fire regime, the
thick-barked ponderosa pine survives fire, whereas the
thinner barked Douglas-fir and ponderosa pine seedlings do
not. If frequent fires are sustained, the ponderosa pine forest
can develop into large patches of open-grown old growth,
intermixed with relatively small openings that can persist
for centuries. During a cool wet climatic period, or through
fire suppression, Douglas-fir or denser ponderosa pine can
become established. The increased biomass and structural
heterogeneity of these denser forests allow fires to develop
into active crown fires that return the site to the initial stand
establishment phase. If fires burn these areas again, forest
establishment may be limited because of loss of seed source,
limited soil moisture, and high surface temperature.

Historical and Current Conditions

A century of fire exclusion, coupled with extensive
logging and grazing, has changed these open dry wood-
lands to closed, dense forests that are often dominated by
Douglas-fir.

Climate Change Responses

This vegetation type may be reduced in some areas of its
current range under a changing climate because of dry, hot
conditions. However, this type may expand into the mixed
mesic forest type (next subsection), especially on south
slopes, as drought increases. This forest type will probably
be the most dynamic in the future, with many of the current
areas of this type seeing losses in Douglas-fir, balanced
by gains in ponderosa pine. Dry Douglas-fir communities
that are currently too cool to support ponderosa pine may
support more ponderosa pine with warming climate. Fire
exclusion in this type has increased forest density and ac-
cumulation of surface fuels; both conditions are likely to
support high-severity fires in the next century (Keane et al.
2002).

Western Larch Mixed Mesic Forests

Ecology

Western larch mixed-conifer forests, found in northern
Idaho and northwestern Montana, evolved under a combina-
tion of moist air masses from the west and cold air masses
from Canada, resulting in a patchy forest condition with a
mixture of western larch, ponderosa pine, lodgepole pine,
Douglas-fir, and spruce subalpine forests. Western larch
is most prominent on cooler, moist topographic positions
(Touzel 2013); thus, the influence of a warming climate
may change the potential distribution of western larch to the
more northerly aspects with soils most capable of retaining
needed moisture during the growing season (Rehfeldt and
Jaquish 2010).
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Disturbance Interactions

These forests evolved under a mixed-severity fire regime,
which produced a diverse pattern of shade-intolerant west-
ern larch, ponderosa pine, lodgepole pine, and Douglas-fir.
High-severity fire was more common on moist and cool
sites, and produced very large burn patches, often with
legacy western larch (Marcoux et al. 2015). Under fire ex-
clusion, many of these forests have become denser, putting
them at risk to high-severity fire (Arno 2010; Harrington
2012; Hopkins et al. 2013).

Historical and Current Conditions

In the past, wildland fire maintained extensive stands of
western larch across Montana and Idaho. Due to its great
value as a timber species, many older stands of western
larch were harvested across much of the Northern Rockies,
and these forests were often planted back to western larch
after extensive site treatments. With fire exclusion, succes-
sion advanced and western larch was replaced with mixed
stands of lodgepole pine, Douglas-fir, and grand fir.

Climate Change Responses

The western larch mixed-conifer forests of northern
Idaho and northwestern Montana are a forest type that has
been changing and is likely to continue to change. Fire
exclusion, coupled with climate change, will probably
continue to reduce western larch and increase the more
shade-tolerant Douglas-fir, grand fir, and subalpine fir in
some areas. Continued fire exclusion will result in further
accumulation of surface and canopy fuels, and coupled
with hotter and drier conditions with climate change, will
put these forests at risk of high-severity fire. High mortality
of the seed-bearing western larch and ponderosa pine may
result.

Some attributes of this cover type may serve to make it
more resilient in the future. Western larch is not susceptible
to the wide range of insects and diseases common to its
associated tree species, and it has the best ability to survive
fire of all its tree associates. As such, it makes an excellent
candidate to feature in management to increase resilience.
However, western larch mixed mesic forests are one of our
most vulnerable forests to climate change impacts, mainly
because past land management has made natural western
larch forests susceptible to the damaging effects of unchar-
acteristically high-severity wildfires. Management of these
forest types to create stand and landscape conditions within
the historical range of variability are likely to increase resil-
ience to climate change.

Mixed Mesic Western White Pine-Western
Redcedar-Western Hemlock-Grand Fir Forests
Ecology

Moist forests within the Northern Rockies range from
500 to 1,750 feet and occasionally occur at 1,900 feet
(Jain and Graham 2005). These forests are influenced by
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a maritime climate with wet winters and dry summers.
Precipitation ranges from 20 to 91 inches and predominantly
occurs from November to May. A defining characteristic

of these forests is a layer of fine-textured ash (up to 24
inches thick) that caps the residual soils. In addition, these
forests are characterized by complex topography, including
dissected slopes and varying degrees of slope angle, all

of which influence soil development and ash cap depth.
Disturbance is another important component of these forests
that contributes to creating vegetative mosaics. Thus, the
combination of disturbance, topography, moisture and tem-
perature regimes, parent material, soil weathering, and ash
cap depth results in productive vegetation that is complex in
composition and structure. For example, up to 10 different
tree species can occupy a given square yard of this forest
type (Jain and Graham 2005).

The nine primary tree species that grow together in this
wet forest type, outside of riparian areas, are ponderosa
pine, western larch, Douglas-fir, grand fir, western white
pine, western redcedar, western hemlock, lodgepole pine,
and Engelmann spruce. The niche that these species oc-
cupies varies by habitats. For example, western redcedar
is a mid-seral species in western hemlock types but is late
seral on western redcedar riparian and upland habitat types.
The genetic adaptive capacity and autecological charac-
teristics of individual trees species and their tolerances to
light, moisture, temperature, and disturbance is also highly
variable among the different tree species in this forest type
(Minore 1979). Some species are better adapted to regen-
erating in shade (western hemlock and western redcedar),
whereas other species can regenerate in a wide range of
conditions (western white pine). Some have a stronger
competitive capacity than other species when growing
together; for example, western larch cannot compete with
western hemlock. Some are drought-tolerant (ponderosa
pine, western larch, and western white pine), and others are
drought-intolerant (western hemlock).

Disturbance Interactions

Natural disturbances (snow, ice, insects, disease, and
fire), when combined, create heterogeneity in patch sizes,
forest structures, and composition in this forest type. Ice
and snow create small gaps and openings, reducing forest
densities and altering species composition. Native insects
(e.g., bark beetles) and diseases (e.g., Armillaria root rot
and dwarf mistletoes) infect and kill the very old or stressed
individuals, and tend to diversify vegetation communities
(Hessburg et al. 1994). A mixed-severity fire regime also
plays a role in creating a mosaic of forest compositions and
structures. Historically, nonlethal surface fires occurred
at relatively frequent intervals (every 15 to 25 years) in a
quarter of the area of this forest type. Lethal crown fires
burned about a quarter of the area at intervals of 20 to 150
years, occasionally extending to 300 years. A mixed-severity
fire regime characterized the rest of the moist forests, with
return intervals of 20 to 150 years. Fires typically started
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burning in July and were usually out by early September
(Hann et al. 1997).

Historical and Current Conditions

In addition to white pine blister rust and salvage that re-
moved most of the western white pine, harvesting removed
the early-seral, shade-intolerant species (e.g., ponderosa
pine and western larch) that were resistant to fire and other
disturbances. Partial canopy removal and minimal soil sur-
face disturbance in these harvests were ideal for Douglas-fir
and grand fir, which regenerated aggressively, in contrast
with the shade-intolerant pines and larch species. Fire exclu-
sion also prevented the creation of canopy openings and
receptive seedbeds for the regeneration of pine and larch.
Similar to the dry forests, high canopies (>165 feet) of west-
ern white pine, western larch, and ponderosa pine and other
early and mid-seral species are currently absent. In their
place, the present forest structure and composition (grand
fir and Douglas-fir) favor the compression of nutrients,
microbial processes, and root activity toward the soil surface
(Harvey et al. 2008). When wildfires occur, surface organic
layers can be consumed, decreasing the nutrition and
microbial processes important for sustaining these forests.
In general, the lack of the early seral species and historical
structures most likely have altered the disturbance regimes
that sustained these forests.

Climate Change Responses

Habitat types are not static but reflect the operational en-
vironment that supports a particular set of plant species. As
the moist forests experience climate change, the competition
among species and how these forests evolve will be par-
ticularly dynamic. Thus, any discussion concerning climate
change and an individual tree species that grows in moist
mixed-conifer (and dry mixed-conifer) forest must be placed
within the context of species cohorts, the adaptive capacity
of an individual tree species, the interaction of disturbance,
and how environmental niches change over time and space.
For example, if future moisture regimes no longer support
the current distribution of western hemlock, the remaining
species that thrive on the upland western redcedar habitat
types are likely to become dominant (Graham 1990). How
disturbance changes (intensity, extent, and return interval)
with a warming climate can also influence the subsequent
effects on particular tree species. In a drier climate, western
redcedar may become the late-seral species in what we con-
sider to be western hemlock habitat types.

Lodgepole Pine Mixed Subalpine Forests
Ecology

Lodgepole pine forests straddling and occurring east
of the Continental Divide are associated with the cold
continental air mass that influenced their development. The
higher elevations combined with the relatively dry cold
climate associated with this type exclude many of the warm
and moisture-dependent tree species found on the west side
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of the Continental Divide. Aspen, which is often associated
with moisture seeps, swales, and other moist sites within
this type, is released from conifer suppression by fire.
Disturbance is needed to maintain aspen in this type and
to keep seral lodgepole pine communities from becoming
dense with subalpine fir.

Disturbance interactions. Lodgepole pine mixed
subalpine forests in the Northern Rockies evolved with
both high-severity and mixed-severity fire regimes. Mixed-
severity fire regimes were common in central Montana on
flatter slope positions and produced a diverse pattern of
various-sized patches of different ages and tree sizes. Stand-
replacing fire return intervals were 100 to 500 years (Fischer
and Clayton 1983). However, stands reaching 60 to 80 years
of age often suffered severe mortality from mountain pine
beetle, creating snags and down fuel (Jenkins et al. 2008).

Historical and Current Conditions

This forest type was probably the most extensive in the
Northern Rockies, with vast subalpine areas dominated by
even-aged and multiaged stands of lodgepole pine, mixed
with aspen, created by mixed-severity fire. Subalpine fir has
probably increased as a result of fire exclusion, but more
importantly, most of this type is currently dominated by
large, mature lodgepole pine. Landscapes of these mature
forests have fostered the large mountain pine beetle out-
break observed in many parts of the region (Central Rockies
and GYA).

Climate Change Responses

This type will probably expand and contract, but provid-
ed that fire is not excluded from these areas, it is not likely
to change substantially in a warmer climate.

Whitebark Pine Mixed Upper
Subalpine Forests

Ecology

Perhaps the most threatened forest type, whitebark pine
mixed upper subalpine forests are associated with high
elevations, and the distribution of this type is primarily in-
fluenced by the cold continental air masses in Montana and
higher elevations in northern Idaho. In this type, whitebark
pine is found with subalpine fir, Engelmann spruce, and
mountain hemlock, and subalpine larch in the area west of
the Continental Divide. This type occurs on about 5 mil-
lion acres in the Northern Rockies, primarily on the higher
ridges and mountaintops. At the lower elevations within
the range of this type, whitebark pine typically serves as a
minor early-seral species in mixed-conifer stands. At the
uppermost elevations, whitebark pine can serve as a major
climax species.

Disturbance Interactions

Whitebark pine and its associates developed under both a
stand-replacing fire regime on steep north slopes, and under
a mixed-severity fire regime on other aspects and flatter
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slope positions. Various sized patches are common within
the range, with density depending on moisture availability.
The future could bring more-intense fire that could further
threaten whitebark pine distribution.

There have been three outbreaks of mountain pine beetle
in the Northern Rockies over the last 100 years. The first
one in the 1920s—1930s killed significant areas of whitebark
pine (Tomback et al. 2001). Snags from this outbreak can
still be seen today. Another major outbreak occurred in the
early 1980s, but the largest outbreak started in the mid-
2000s and has continued, especially in the GYA.

Historical and Current Conditions

More than 14 percent of the Northern Rockies could
have consisted of whitebark pine forests, with late-seral
mixed fir-spruce patches mixed throughout, prior to 1910.
However, with extensive white pine blister rust epidemics
and mountain pine beetle outbreaks over the last several
decades, the upper subalpine landscape has slowly shifted
from whitebark pine to more spruce and fir and nonforest
vegetation in some places (Tomback et al. 2001).

Climate Change Responses

There may be substantial change in the upper subalpine
forests over the next century. However, that change will
probably be driven by whitebark pine mortality from white
pine blister rust rather than climate change, and the changes
will primarily be in forest composition and structure rather
than distribution. Over the last 40 years, whitebark pine
has become a minor component of this forest type in many
parts of the western Northern Rockies because of white pine
blister rust, allowing subalpine fir to become dominant in
both the overstory and understory. Although the GYA has
yet to have massive die-offs from white pine blister rust,
it has not escaped recent mountain pine beetle outbreaks,
and the whitebark pine mortality rates in cone-bearing
trees from these outbreaks exceed 50 percent in most areas.
Recent fires in the upper subalpine have served to reset the
successional clock to the earliest seral stages of shrub and
herbaceous communities, but whitebark pine regeneration
levels are low in these burns because of low population lev-
els (Leirfallom et al. 2015). Clark’s nutcracker apparently is
eating most of the seeds from the few remaining whitebark
pine trees and not enough of their seed caches go unclaimed
to germinate and grow into trees (Keane and Parsons
2010). This has served to keep recently burned areas in the
shrub/herb stage for long periods, which may allow time
for other wind-dispersed tree species to populate the burn.
Thus, whitebark pine may continue to decline in this type,
and species dominance is likely to shift to subalpine fir,
Engelmann spruce, and lodgepole pine.

Most of the range shifts of this forest type will probably
be in wilderness areas, as about 50 percent of this type is
found in wilderness (Keane 2000). Many Northern Rockies
wilderness areas have lands that are above the elevations
at which this type occurs, so there are potential areas for
this type to expand. Wildland fire will be the catalyst for

USDA Forest Service RMRS-GTR-374. 2018

EFFECTS OF CLIMATE CHANGE ON FOREST VEGETATION IN THE NORTHERN ROCKIES REGION

any range shifts in this forest type. Continued fire exclusion
may seem appropriate for whitebark pine types, but it is
contraindicated in many situations. Most whitebark pine
will eventually succumb to white pine blister rust; thus, sup-
pressing fire does not necessarily protect it. Fire is needed
to create conditions in which whitebark pine can become
established and grow to maturity. If fires are suppressed

and no rust-resistant trees are planted, then whitebark pine
is likely to remain a minor component of this forest type.
However, if wildland fires occur and burned areas are plant-
ed with rust-resistant trees, then whitebark pine may become
more abundant in the high elevation settings of the Northern
Rockies. Therefore, land management is likely to be more
critical than climate in dictating the future composition and
extent of this forest type.

Resources of Concern
Landscape Heterogeneity
Background

Historically, most Northern Rockies landscapes were
shaped by disturbance regimes interacting with vegetation
and climate creating shifting mosaics of diverse vegetation
assemblages. Wildfire was the primary sculptor of historical
landscape composition and structure, especially at lower
elevations (including ignitions by Native Americans and
lightning), with other disturbances (mountain pine beetle
outbreaks, root rot pockets, windthrow) woven into the
patchwork of forestlands. Forest patterns were constantly
shifting over time and space at rates governed by interac-
tions among vegetation, disturbance, and climate, resulting
in different patch sizes, shapes, and distributions. Therefore,
understanding the variability and scale of disturbance and
succession is critical to quantifying historical landscape
heterogeneity, which in turn affects biological diversity and
ecosystem resilience.

High landscape heterogeneity creates diverse biological
structure and composition, which are considered more resil-
ient and resistant to disturbances (Bannerman 1997; Cohn
et al. 2015; Haire and McGarigal 2010; Turner 1987). For
example, the effects of mountain pine beetle outbreaks are
less severe in landscapes with diverse age structures of host
tree species (Schoettle and Sniezko 2007). Heterogeneous
landscapes also promote population stability (Oliver et al.
2010) because fluctuations in plant and animal population
are less when landscape structure is diverse (Turner et al.
1993). Heterogeneous landscapes may also have more cor-
ridors, buffers, and refugia for wildlife and plant migration.

During the past 100 years, land management practices
have altered the temporal and spatial characteristics of
Northern Rockies landscapes. Timber management has
modified patch shape and structure at lower elevation,
and fire exclusion has changed patch size and diversity.
Fire exclusion has in many cases created landscapes with
large contiguous patches of old, dense stands with high
surface and canopy fuel accumulations (Keane et al. 2002),
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although some areas with frequent disturbance (e.g.,
frequently burned ponderosa pine forest) are also homoge-
neous compared to presettlement montane forests (Romme
2005). Because we have directly or indirectly managed for
late seral conditions, some Northern Rockies landscapes
are highly susceptible to insects and disease, owing to low
tree vigor from intense competition, and have an abundance
of live and dead fuels that will contribute to the severity of
future wildfires.

Climate Change Responses

Many current Northern Rockies landscapes have less
ability to buffer potential climate change effects because of
widespread increases in the density of shade-tolerant species
in forests, although some landscapes, especially in subalpine
forests, still have structures and compositions similar to
those observed in the historical record. Recent wildfires,
restoration activities, and timber harvest have helped return
some heterogeneity, especially in wilderness areas and
national parks. However, most Northern Rockies landscapes
are outside their historical range and variability (HRV) in
landscape structure, making it challenging to implement ef-
fective climate change adaptation.

Landscape heterogeneity may increase if climate-
mediated changes in disturbance regimes increase (Funk
and Saunders 2014). During the past 20 years, wildfire
area burned and mountain pine beetle outbreaks have both
increased, replacing late seral forests with younger age and
size classes and thereby increasing heterogeneity. Continued
increases in wildfires and other disturbances are projected in
a warmer climate (Bentz et al. 2010; Marlon et al. 2009), so
projected declines in biodiversity (e.g., Botkin et al. 2007)
could be balanced by gains in landscape heterogeneity
(Kappelle et al. 1999).

Continued fire exclusion in a warmer climate may promote
late seral forests that would be stressed from competition
and drought (van Mantgem and Stephenson 2007). Wildfires
that will eventually burn these landscapes may become large
and burn more severely, thereby creating large patches of
homogeneous postburn conditions (Flannigan et al. 2005,
2009). These fires may also create semipermanent shrublands
and grasslands in areas that have become too dry for conifer
establishment or where seed sources are eliminated (Fulé
et al. 2004). However, some have found a high degree of
heterogeneity in severity and vegetation conditions following
large fires (Collins and Stephens 2010; Keane et al. 2008).
Although the size, shape, and distribution of forest manage-
ment treatments are a concern for landscape heterogeneity,
the effects of management on landscape properties may be
overwhelmed by other disturbances.

Is there an appropriate level of heterogeneity for
Northern Rockies landscapes? How can management
facilitate landscape heterogeneity and minimize adverse
climate change effects? Mechanistic ecosystem models can
be used to simulate landscape structure and composition in
the future and to understand effects of management actions
(Keane 2013), but cannot generate heterogeneity metrics as
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design criteria for ecosystems. Using the HRV of landscape
characteristics is a more straightforward and useful approach
(Keane 2013; Morgan et al. 1994a; Nonaka and Spies 2005)
(box 6.1). The HRV of landscape metrics may not represent
future conditions (Millar 1997; Millar and Woolfenden
1999), but does provide an estimate of landscape conditions
under which ecosystems have developed over the last 1,000
years, conditions that produced functional, heterogeneous
ecosystems (Landres et al. 1999). It is preferable to first use
HRYV as a reference for landscape heterogeneity (Keane et
al. 2015b), then ecological models can be parameterized

for historical conditions and used to generate a set of useful
landscape metrics (Keane 2012).

Timber Production
Background

The area managed for timber production as one of the
objectives for management is about 8,700 out of 34,000
square miles of forested lands throughout the USFS
Northern Region. This area includes approximately 2,600
square miles in northern Idaho, 4,250 square miles in
western Montana, 1,400 square miles in central and eastern
Montana, and 450 square miles in the Greater Yellowstone
portion of the Northern Region.

During the 1970s and 1980s, an average of 98 square
miles were harvested each year, which amounted to about
1,900 square miles that had some type of harvest treat-
ment implemented to meet various management objectives
including timber production. From 1990 through 2014, an
average of 39 square miles were harvested each year, which
amounted to about 970 square miles. Recent harvest during
2014 of 32 square miles may be more typical of current and
near-term future harvest levels.

The species composition of timber harvests has fluctuated
during the past 45 years, as harvest has often followed some
disturbance agent such as mountain pine beetle in western
white pine and lodgepole pine, spruce beetle in Engelmann
spruce, white pine blister rust in western white pine, root
disease in Douglas-fir and grand fir, Douglas-fir beetle and
spruce budworm in Douglas-fir, and wildfire in a variety
of species types. The current percentage of acreage in each
of the major species composition groups within the lands
suitable for timber production across the Northern Region
is 6 percent ponderosa pine, 13 percent dry Douglas-fir, 27
percent lodgepole pine, 6 percent western larch, 12 percent
mixed subalpine fir and Engelmann spruce, and 35 percent
mixed western white pine, grand fir, western hemlock, moist
site Douglas-fir, and western redcedar forests.

Many of the current timber harvests in mixed mesic types
of northern Idaho and western Montana are removing grand
fir, Douglas-fir, and western hemlock, and replanting west-
ern white pine, western larch, and ponderosa pine. Other
harvests involve removal of lodgepole pine and replanting
of western larch. Thinning in ponderosa pine and dry
Douglas-fir forests is also common. Within eastern Montana
and the GYA, harvesting is concentrated on mountain pine
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Box 6.1—Using Historical Range and Variability to Assess and Adapt to Climate Change

(Swanson et al. 1994; Watt 1947).

spatiotemporal scales.

management objective (Keane et al. 2009).

the near term because it has relatively low uncertainty.

To effectively implement ecosystem-based management, land managers often find it necessary to obtain a reference
or benchmark to represent the conditions that describe fully functional ecosystems (Cissel et al. 1994; Laughlin et al.
2004). Contemporary conditions can be evaluated against this reference to determine status, trend, and magnitude
of change, and to design treatments that provide society with valuable ecosystem services while returning declining
ecosystems to a more sustainable condition (Hessburg et al. 1999; Swetnam et al. 1999). Reference conditions

are assumed to represent the dynamic character of ecosystems and landscapes, varying across time and space

The concept of historical range and variability (HRV) was introduced in the 1990s to describe past spatial and
temporal variability of ecosystems (Landres et al. 1999), providing a spatial and temporal foundation for planning
and management. HRV has sometimes been equated with “target” conditions (Harrod et al. 1999), although targets
can be subjective and somewhat arbitrary; they may represent only one possible situation from a range of potential
conditions (Keane et al. 2009). HRV encompasses a full range of conditions that have occurred across multiple

HRV represents a broad historical envelope of possible ecosystem conditions—burned area, vegetation cover type
area, patch size distribution—that can provide a time series of reference conditions. This assumes that

(1) ecosystems are dynamic, not static, and their responses to changing processes are represented by past
variability; (2) ecosystems are complex and have a range of conditions within which they are self-sustaining, and
beyond this range they make a transition to disequilibrium (Egan and Howell 2001); (3) historical conditions can
serve as a proxy for ecosystem health; (4) the time and space domains that define HRV are sufficient to quantify
observed variation; and (5) the ecological characteristics being assessed for the ecosystem or landscapes match the

The use of HRV has been challenged because a warmer climate may permanently alter the environment of
ecosystems beyond what was observed under historical conditions (Millar et al. 2007a). In particular, disturbance
processes, plant species distribution, and hydrologic dynamics may be permanently changed (Notaro et al. 2007).
However, a critical evaluation of possible alternatives suggests that HRV might still be the most viable approach in

An alternative to HRV is forecasting future variations of landscapes under changing climates by using complex
empirical and mechanistic models. However, the range of projections for future climate from the commonly used
global climate models may be greater than the variability of climate over the past three centuries (Stainforth et al.
2005). This uncertainty increases when we factor in projected responses to climate change through technological
advances, behavioral adaptations, and population growth (Schneider et al. 2007). Moreover, the variability of
climate extremes, not the gradual change of average climate, will drive most ecosystem response to climate-
mediated disturbance and plant dynamics (Smith 2011) that are difficult to project. Uncertainty will also increase as
climate projections are extrapolated to the finer scales and longer time periods needed to quantify future range and
variability (FRV) for landscapes (Araujo et al. 2005; Keane et al. 2009).

Given these cumulative uncertainties, time series of HRV may have lower uncertainty than simulated projections

of future conditions, especially because large variations in past climates are already captured in the time series. It
may be prudent to wait until simulation technology has improved enough to create credible FRV landscape pattern
and composition, a process that may require decades. In the meantime, attaining HRV would be a significant
improvement in the functionality of most ecosystems in the Northern Rockies, and would be unlikely to result in
negative outcomes from a management perspective. As with any approach to reference conditions, HRV is useful as
a guide, not a target, for restoration and other management activities.

beetle-susceptible or dead lodgepole pine and ponderosa
pine, and thinning in ponderosa pine and dry forest Douglas-
fir forests is also common.

Climate Change Responses

With increasing temperatures and the potential for in-
creases in forest productivity (Aston 2010; Joyce 1995) and
biomass accumulation (Lin et al. 2010) will probably come
potential increases in timber production for most Northern
Rockies forests (Garcia-Gonzalo et al. 2007). Productivity
increases are projected to be substantial because most
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forested lands in the region are in the mesic montane,
subalpine, and upper subalpine. The increase in biomass
might result in higher basal areas, greater timber value, and
increased regeneration (Sohngen et al. 2001). However,
these mesic temperate forests might also become denser,
which may result in decreased vigor that may offset gains in
productivity from climate alone. Depressed vigor might also
increase susceptibility to insects and disease; because insect
and disease outbreaks are projected to increase in severity
and frequency, there may be some major timber losses from
forest pathogen and insect mortality (Joyce et al. 2008).
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There will also be an increase in potential mortality from
wildland fire with increased fuel, drier conditions, and lon-
ger fire seasons, and this might facilitate even more timber
losses. Future timber harvests from mature timberland might
be a race against losses from increased insects, disease, and
fire. The greatest climate change impacts on commercial
forestry may come from changes in the disturbance regimes
rather than changes in productivity (Kirilenko and Sedjo
2007).

There are other considerations in addressing how timber
resources in the Northern Rockies region will change with
warming climates. First, most of the roads on Northern
Rockies lands are in drier, lower elevation forests where
productivity may decline and more trees are projected to die
from drought. Fewer roads are in the subalpine and upper
subalpine where productivities and associated timber values
are likely to increase, resulting in limited ability to transport
timber to markets. Creation of new roads is expensive,
risky, and environmentally damaging. These higher lands
are distant from timber markets and sawmills, and are also
more topographically complex and steep, thereby limiting
the potential for mechanized timber removal while increas-
ing harvesting costs. These higher elevation lands are also
where most of the threatened and endangered plant and
animal species are found, especially grizzly bear (Ursus
arctos), Canada lynx (Lynx canadensis), and wolverine
(Gulo gulo), making it more difficult to implement timber
harvest projects in these sensitive areas. If increases in
insects, diseases, and fire are realized, the quality of timber
will probably be reduced, and the value of the timber for
building material will drop dramatically (Gillette et al.
2014; Kirilenko and Sedjo 2007; Spittlehouse and Stewart
2004). Longer fire seasons will probably mean there will be
less time to perform forestry tasks, such as inventory, sale
layout, and cruising. This may also mean that less agency
money will be spent on forestry projects, such as ecosystem
restoration, fuels treatments, and timber harvest sales, and
more money will be spent on fire suppression activities. As
the risk of uncharacteristic fire severity due to uncharacter-
istically high forest density increases, there will most likely
be reductions in timber production opportunities, especially
in dry forest areas that may be lost and converted to grass
and shrub lands (Allen et al. 2010).

Timber species will also shift in the future. Increases in
temperature and soil moisture deficits may result in shifts
of desirable timber species, such as western larch, to spe-
cies compositions that are susceptible to root disease, such
as Douglas-fir and grand fir. Any increases in production
at mid- and higher elevations from warming temperatures
could be offset by losses from root disease because of con-
tinued fire exclusion. Land management efforts that create
late-seral, shade-tolerant communities, namely fire exclu-
sion and some fuels treatments, will increase the risk that
standing timber will be affected by damaging agents before
it can be harvested.

Many new forest practices, harvesting techniques, and
markets are being proposed to offset carbon emissions from
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fossil fuels with carbon emissions from harvested biomass
(Kirilenko and Sedjo 2007). Most of these new technologies
will result in better utilization of timber resources and a more
diverse and vibrant timber market. Biomass burning for ener-
gy, for example, could provide a market for noncommercial
material removed from proposed fuels treatments. Slash piles
could have value as biomass for energy. A more diverse mar-
ket for wood products would surely enhance potential timber
harvests in the region, but it is essential that any proposed
cutting activity be done in an ecological context, especially
in this time of rapidly changing climates. Proposed harvest-
ing activities must address a wide diversity of issues, such as
landscape character, species mix, successional dynamics, and
fuels, to ensure these activities are effective and to minimize
the long-term environmental impact.

It is essential that ecological principles be used to design
harvest treatments of the future to ensure the creation of
resistant, resilient forests that can withstand major impacts
of climate change. Designing fuels treatments without
considering ecosystem restoration concerns, for example,
might create forests that are highly susceptible to insects and
disease or fire. Favoring shade-tolerant, fire-susceptible spe-
cies over fire-tolerant, sun-loving, early-seral tree species is
ecologically inconsistent and likely to create landscapes that
are intolerant of future climate change.

One proposed management alternative, carbon sequestra-
tion (see next subsection), might be cause for concern. The
main assumption of most carbon sequestration options is to
maximize biomass to sequester carbon from the atmosphere
and put it into timber products to offset fossil fuel burning.
The problem is that this approach must recognize the role
of disturbance to be effective in the long term. Many stud-
ies have shown that the most resilient forests are ones with
suboptimal carbon sequestration.

Again, the major issue related to climate change and
timber production in the near term is loss from disturbance.
The anticipated increases in drought, severe large wildfires,
root disease, other diseases such as white pine blister rust,
and insect damage such as that from large-scale bark beetle
outbreaks, need to be addressed throughout the Northern
Rockies. Tactics to increase landscape heterogeneity overall
and reduce forest density in the dry forest types will be key
climate change responses in the near term. Adjusting species
composition and distribution may help sustain long-term
timber production.

Carbon Sequestration
Background

North American forests are considered important carbon
sinks and currently offset about 13 percent of annual con-
tinental fossil fuel emissions (Pacala et al. 2007). Size and
persistence of forest carbon sinks depend on land use, land
management, and environmental factors such as vegetation
composition, structure, and distribution, climate, and distur-
bance processes including wildfire.
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Vegetated landscapes play an important role in storing
carbon in the form of plant and animal materials (both live
and dead), aboveground and in soils. Forests store carbon in
soils (about 45 percent of total storage), aboveground and
belowground live biomass (about 42 percent), dead wood
(about 8 percent), and litter (about 5 percent) (Bonan 2008;
Pan et al. 2011). Because forests contain large reservoirs
of carbon (i.e., carbon sinks) and facilitate flows of carbon
from the atmosphere to the biosphere (i.e., carbon sequestra-
tion), they are an important component of the global carbon
cycle and are thought to have the potential to mitigate
climate change (Ingerson 2007; Pan et al. 2011). The carbon
sequestration potential of Earth’s forests is about 33 percent
of global anthropogenic emissions from fossil fuels and land
use (Denman 2007). Carbon typically accumulates in woody
biomass and soils for decades to centuries until a distur-
bance event releases this stored carbon into the atmosphere
(Goward et al. 2008). Disturbance and decomposition are
recognized as primary mechanisms that shift ecosystems
from carbon sinks to carbon sources (Baldocchi 2008),
and wildfire in forested ecosystems is one of the primary
disturbances that regulates patterns of carbon storage and
release (Kasischke et al. 2000a,b). Forest insect outbreaks
can also release carbon through decomposition of needles
and other fine fuels from attacked trees (Kurz et al. 2008).
The amount and rate of carbon release from a disturbance
event depends on the extent and severity of the disturbance,
as well as predisturbance site conditions and productivity
(Bigler et al. 2005; Falk et al. 2007). In the case of both
wildfires and insect outbreaks, although long intervals
between events can allow carbon to accumulate for years
to centuries, probability of disturbance increases with time
(Clark 1989). Changing climate, in combination with other
ecosystem stressors such as disturbance, may be sufficient
to cause structural or functional changes in ecosystems, and
thus fundamentally alter carbon dynamics of landscapes.

Although long intervals between disturbance events,
such as wildfires or insect outbreaks, can allow carbon to
accumulate for years to centuries, probability of disturbance
increases with time (Goward et al. 2008; Loehman et al.
2014). Thus, disturbance-prone forests will eventually move
stored carbon to the atmosphere, regardless of management
strategies designed to limit or prevent disturbance events.
However, unless structural or functional ecosystem shifts
occur, net carbon balance in disturbance-adapted systems
at steady state is zero when assessed over long time periods
and at landscape scales. This is significant to management
for two reasons: (1) disturbance-prone ecosystems can-
not be managed to increase stored carbon over historical
amounts without limiting the occurrence and magnitude of
disturbance events; and (2) major shifts in vegetation com-
position, distribution, and structure resulting from climate
change will result in different patterns of carbon storage on
the landscape as compared with the historical period. Thus,
it is important to develop expectations for landscape carbon
storage potential in the context of projected climate change

USDA Forest Service RMRS-GTR-374. 2018

EFFECTS OF CLIMATE CHANGE ON FOREST VEGETATION IN THE NORTHERN ROCKIES REGION

effects on both disturbance dynamics and vegetation pat-
terns, and the relationships between them.

Climate Change Responses

As described in chapter 8, future warmer, drier condi-
tions are likely to result in more frequent, larger wildfires,
and greater annual area burned, which will serve to move
carbon from biomass storage to the atmosphere. Warmer
temperatures and increased drought stress are also projected
to increase the area susceptible to or affected by beetle
outbreaks. Regrowth of forests following disturbance may
be delayed if the climatic conditions stress remaining or
reestablishing species. Disturbance events in combination
with additional climate-caused stressors may also result in
functional transitions, such as a shift from forests to mon-
tane woodland or grassland-dominated vegetation types,
which would probably result in less stored carbon. Frequent
fires may also maintain open woodlands and savannas that
might sequester less carbon than forests, but these carbon
pools may be more stable and resilient to climate shifts.

Strategies that aim to manage carbon resources should
consider the following:

1. Is the system disturbance-prone? If so, is it reasonable
to expect the system to accumulate carbon over
historical (steady-state) levels, especially given future
climatic conditions that may increase the frequency,
severity, and magnitude of disturbance events?

2. What are appropriate temporal and spatial scales
over which to measure carbon storage? For example,
in forests with multicentury disturbance cycles,
it may take hundreds of years for forests to attain
pre-disturbance levels of carbon, but this does not
mean that they have become carbon sources at the
appropriate, ecological scale of measurement.

3. Can potential future disturbance events be managed?
For example, will it be possible to suppress or exclude
wildfires from the system in the future, and at what
economic or ecological costs?

4. Can additional stressors (e.g., drought stress, invasive
weeds, and other management activities) be mitigated,
to help maintain existing vegetation communities?

5. How might the system change with changing climate
and disturbance? For example, are future climatic
conditions conducive to persistence of forests, or will
conditions become too warm or dry for the current
dominant species?

6. Do planned carbon accounting methods assess
ecological benefits of natural disturbance processes
in carbon-equivalent units so that they can be
weighed against carbon losses from disturbance? For
example, wildfires confer many important ecological
benefits not measurable in carbon units (e.g., nutrient
release and redistribution and stimulation of plant
growth, increased productivity in soil systems from
decomposition of burned material, initiation of
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vegetation succession and forest regeneration, and
increased availability of resources for surviving trees)
that may actually increase carbon sequestration rates.

Two complementary activities, monitoring and modeling,
can improve our understanding of cross-scale ecological
drivers and responses to disturbance (Loehman et al. 2014).
Monitoring programs can be used to quantify long-term
carbon dynamics before and after disturbance, evaluate
responses of ecosystems to changes in climate, and identify
shifts in ecosystem patterns and processes emergent under
changing climates. Monitoring data can also be used to
provide inputs to, calibrate, and validate models. Models,
in turn, can be used to simulate emergent environmental
patterns, compare effects of potential treatments, identify
vulnerable landscapes or ecosystem components, and bridge
gaps between landscape-scale ecological processes and
variables measured in small areas and over short periods
of time. There is room for improvement on both fronts, as
described previously in this chapter. Although it may be
tempting to meet policy-driven goals of increased carbon
storage via management strategies designed to exclude
or limit the extent and magnitude of disturbance events
(e.g., wildfires), it is important to remember that native
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disturbance processes confer many important ecological
benefits not measurable in carbon units (see item 6). Thus,
it will be important to develop accounting methods that can
assess ecological benefits in carbon-equivalent units so that
they can be weighed against carbon losses from disturbance.

Vulnerability Assessment

All items in each of the three levels of assessment were
rated as to their vulnerability to climate change using the
same rubric employed across all chapters in this report
(table 6.4), and the results are summarized in detail in
Appendix 6B. We populated a table with information for the
eight categories in table 6.4 using a thorough consideration
of five factors: climate, disturbance, life history, dependen-
cies, and other stressors. For climate, we considered whether
the species, vegetation type, or resource concern was sensi-
tive to changes in direct effects of climate (temperature
and precipitation) or indirect effects of climate (e.g., soil
moisture, snowpack, seasonality of flows, climatic water
deficit, altered flow regimes, and stream temperature). For
example, we asked, “Does the system inhabit a relatively

Table 6.4—Categories used to assess the vulnerability of species, vegetation types, and resource concerns in this chapter.

Evaluation category Description

Example

Habitat, ecosystem
function, or species

Specific biophysical or social entity of interest

Whitebark pine

Broad-scale climate change

effect expected to affect a resource

Overarching change in climate that is

Warming temperatures

Current condition, existing
stressors

Current status of resource relative to desired
conditions, including factors that are reducing
the quality or quantity of the resource

Reduced abundance, wildland fire, mountain
pine beetle, white-pine blister rust

Sensitivity to climatic
variability and change

Specific sensitivity of a habitat, species, or
ecosystem function that responds to climate

Low ability to compete with encroaching
conifers

Expected effects of climate
change

variability)

How specific habitat, species, or ecosystem
function is expected to respond to climate
change (develop inferences from model
projections and known responses to climatic

Regeneration may be reduced by combination
of warming and low seed availability

Adaptive capacity

Ability to adjust to climate change, to
moderate potential damages, or to cope with
the consequences; usually more appropriate
for species than for systems and processes

Variable: unable to compete with other tree
species, but bird-mediated seed dispersal
allows quick colonization of burned over areas

Exposure The extent to which each species’ physical High
environment will change expressed as low,
moderate, or high
Risk assessment, Estimate of the magnitude of climate change | Moderate
magnitude of effects effects expressed as low, moderate, or high by
time period
Risk assessment, Estimate of the likelihood that climate change | High

likelihood of effects

effects will occur expressed as low, moderate,
or high by time period

184
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narrow climatic zone, or does it experience large changes
in composition or structure with small climatic changes?”
We also considered both direct sensitivity to climate change
(e.g., ecophysiology and life history) and indirect sensitiv-
ity to climate change (e.g., ecological relationships such

as competition, dispersal, and migration). Vulnerability to
disturbance was assessed in reference to whether the spe-
cies, type, or concern was sensitive to major disturbances,
primarily wildland fire, insect outbreaks, drought, and
pathogens. Disturbances are major catalysts for vegeta-

tion change and can combine with climate stressors and
nonclimate stressors to create a broader stress complex with
multiple interactions. Life history aspects of the species and
vegetation type were considered to address the impact of the
growth rate, susceptibility to mortality, longevity, and re-
productive strategy of a species, all of which may influence
sensitivity to climate change. Species with long lifespans
may have lower vulnerability than short-lived species. We
also addressed the dependence of species on other ecosys-
tem processes or landscape elements. Riparian species, for
example, are dependent on wet conditions. Last, nonclimate
stressors, such as land use, grazing, timber harvest, and fire
exclusion were integrated into our assessment.
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The vulnerability assessment in Appendix 6B is further
summarized in table 6.5 for only the tree species included
in this report. We ranked each species by subregion (fig.
6.1) and removed those species that did not occur in a given
subregion. We also included the rankings of two other ef-
forts for comparison purposes. The Devine et al. (2012)
report assessed vulnerability for tree species in the Pacific
Northwest, and the Hansen and Phillips (2015) effort as-
sessed vulnerability for some Northern Rockies tree species
using SDMs. This information is presented as a means of
helping land managers to integrate climate change impacts
into their planning documents and analyses.

Adaptation Strategies
and Tactics

This chapter documents what could happen to Northern
Rockies forest resources under potential future climates.
Land managers need options for adapting to climate change
and mitigating any adverse impacts incurred as a result of
changing climate. Adaptation can be defined as initiatives

Table 6.5—Final tree species vulnerability ratings (1 = lowest vulnerability) for the entire Northern Rockies (NR), and the
five subregions of the NR. Also included are ratings from the Pacific Northwest in Devine et al. (2012) report and from

the northern Rocky Mountains in Hansen and Phillips (2015).

Devine et al. Hansen and
Tree species NR | West | Central | East | GYA | Grass (2012) Phillips (2015)
Alpine larch 1 2 1 NA2 | NA NA 4 NRTP
Whitebark pine 2 1 2 1 1 NA 1 1
Western white pine 3 5 3 NA NA NA 13 NRT
Western larch 4 6 4 NA NA NA 12 8
Douglas-fir 5 8 8 2 2 1 11 9
Western redcedar 6 4 5 NA NA NA 15 7
Western hemlock 7 3 6 NA NA NA 10 6
Grand fir 8 7 7 NA NA NA 5 11
Engelmann spruce 9 9 11 3 4 5 3 5
Subalpine fir 10 10 12 4 5 6 2 4
Lodgepole pine 11 11 10 5 6 7 8 3
Mountain hemlock 12 3 9 NA NA NA 7 2
Cottonwood 13 12 13 6 3 2 17 NRT
Quaking Aspen 14 13 14 8 7 3 6 NRT
Limber pine 15 NA 15 7 8 4 18 NRT
Ponderosa pine-west 16 14 16 NA NA NA 14 10
Ponderosa pine-east 17 NA NA 8 9 8 NRT 10
Green ash 18 NA NA 9 10 9 19 NRT

2 NA = Not applicable.
b NRT = Not rated.

USDA Forest Service RMRS-GTR-374. 2018
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and measures to reduce the vulnerability of natural and
human systems against actual or expected climate change
effects (IPCC 2007). Adaptation actions range from the sim-
ple, such as doing nothing or increasing the harvest rotation
age, to the complex, such as implementing fuels treatments
to reduce the risk of high-severity fire in ecosystems with
rare plants (Spittlehouse and Stewart 2003). Most land
managers have the tools, knowledge, and resources to begin
to address climate change, but as Swanston and Janowiak
(2012) note, managers need to expand their thinking to con-
sider new issues, spatial scales, timing, and prioritization of
efforts. For example, managers need to account for the high
variability and trend of climate in the design of alternative
land management actions.

There are some fundamental principles that can serve as
starting points in the development of adaptation approaches
(Joyce et al. 2008; Millar et al. 2007a; West et al. 2009). First,
it will be increasingly important to prioritize management ac-
tions based on both the vulnerability of resources and on the
likelihood that actions to reduce vulnerability will be effective
(i.e., prioritization). Next, adaptive management principles
provide a decisionmaking framework that maintains flexibil-
ity and incorporates new knowledge and experience over time
(i.e., adaptive management). Management actions that result
in a wide variety of benefits under multiple scenarios but have
little or no risk may be the first places to look for near-term
implementation (i.e., low-hanging fruit). Where vulnerability
to a particular resource is high, precautionary actions to
reduce risk in the near term, even with existing uncertainty,
may be essential (i.e, triage). It is important to remember that
climate change is much more than increasing temperatures;
increasing climate variability across all components of cli-
mate, such as precipitation, humidity, and radiation, will lead
to equal or greater impacts that will need to be addressed (i.e.,
increased uncertainty). Last, many adaptation actions are of-
ten complementary with other land management actions, and
any actions to adapt forests to future conditions may also help
restore these forests to healthy conditions (i.e., multiple objec-
tives). When designing adaptation actions, it is important to
address and integrate these principles to maximize efficiency.

The concepts of resistance, resilience, and response serve
as the fundamental options for managers to consider when
responding to climate change using adaptation (Millar et al.
2007a; Swanston and Janowiak 2012). Resistance options
improve the defenses of an ecosystem against anticipated
climate change responses or directly defend the ecosys-
tem against disturbance to maintain current conditions.
Resistance actions are often effective in the short term, but
resistance options are likely to require greater effort over
the long term as the climate shifts further from historical
norms. Moreover, there is a real risk that the ecosystem
will undergo irreversible change because of large climatic
shifts, thereby rendering all resistance activities ineffec-
tive. Resilience options allow some change, but emphasize
a quick return to prior conditions after a disturbance.
Resilience actions are also short-term and should be used for
high-value resources or areas that are buffered from climate
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change impacts. Response options intentionally accommo-
date change and allow ecosystems to adaptively respond to
changing and new conditions. A wide range of actions exists
under this option, all working to influence ways in which
ecosystems adapt to future conditions.

Resistance, resilience, and response options serve as the
broadest and most widely applicable level of a continuum
of management responses to climate change. Along this
continuum, adaptation actions become increasingly specific
from options to strategies to tactics. Adaptation strategies
describe how adaptation options could be employed, but
they are still broad and general in their application across
ecosystems. Tactics are more-specific adaptation responses,
and they can provide prescriptive directions on how actions
can be applied on the ground.

There are many broad strategies and associated tactics
that can be used to adapt to climate change impacts in the
Northern Rockies region, and the major ones that were
identified by managers and scientists in a series of work-
shops in fall 2015 are detailed in table 6.6 and described
next. Adaptation tactics for all Northern Rockies species,
vegetation types, and resource concerns discussed in this
chapter are summarized in table 6.7. Adaptation tactics were
designed at different scales and levels of organization. Some
involve Northern Rockies managers at the highest levels
of agency organization, and others apply to ecologists,
silviculturists, and resource specialists at the lower levels
of organization. Some tactics concern multiple species or
resources, while others are specific to just one entity. These
tactics were designed so that Northern Rockies managers
can use these recommendations to directly address climate
change impacts in their planning and implementation of
any action, specifically National Environmental Policy Act
analysis.

As in other adaptation efforts, many tactics developed
by Northern Rockies managers were focused on protecting
forests from severe disturbance, mainly fire (table 6.6).

For example, managers identified promoting disturbance-
resilient forest structure and species as key strategies.

Both thinning and prescribed fire can be used to reduce
forest density and promote disturbance-resilient species.
Disturbance-resilient species can also be planted. Managers
recognized the importance of promoting and planting site-
adapted species, specifically western larch and western
white pine on moist sites, ponderosa pine on dry sites,
Douglas-fir on extremely dry sites, and lodgepole pine on
harsh sites that are difficult to regenerate.

Preparing for disturbance will also be important under
a changing climate. Tree regeneration after severe fire
may be more limited in the future with increased drought.
Promoting legacy trees of disturbance-resilient species may
help to increase postfire regeneration. Managers may also
want to increase seed collection and ensure that adequate
nursery stock is available for post-disturbance planting.

Another theme in the adaptation strategies and tactics
developed by Northern Rockies managers was promoting
diversity, including species diversity, genetic diversity, and

USDA Forest Service RMRS-GTR-374. 2018
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CHAPTER 6:

landscape diversity. Increasing diversity is a “hedge your
bets” strategy that reduces risk of major forest loss. Areas
with low species and genetic diversity are likely to be more
susceptible to the stressors associated with climate change;
thus, promoting species and genetic diversity, through plant-
ings and in thinning treatments, is likely to increase forest
resilience to changing climate. Promoting heterogeneity of
species and structure across the landscape is also expected
to increase resilience to wildfire, insects, and disease.

There is a lot of uncertainty associated with climate
change, and managers identified several ways to in-
crease knowledge and manage in the face of uncertainty.
Implementation of an adaptive management framework can
help managers deal with uncertainty and adjust management
over time. In the context of climate change adaptation,
adaptive management involves: definition of management
goals, objectives and timeframes; analyzing vulnerabilities;
determining priorities; developing adaptation strategies and
tactics; implementing plans and projects; and monitoring,
reviewing, and adjusting (Millar et al. 2014). Development
of a consistent monitoring framework that can capture
ecosystem changes with shifting climate is a key component
of the adaptive management framework. For example,
tracking tree species regeneration and distribution will help
managers determine how species are responding to climatic
changes and ways to adjust management accordingly (e.g.,
guidelines for planting). Integration between research and
management and across resource areas (e.g., forest manage-
ment and wildlife) will also be key in implementation of
the adaptive management framework to ensure that the best
available science is being considered in on-the-ground man-
agement and that management approaches do not conflict
(e.g., effects of a particular thinning treatment on wildlife).

Managers also identified adaptation strategies and
tactics to maintain particular species or community types
of concern. For example, climate change is likely to lead
to increased whitebark pine mortality through increased
mountain pine beetle activity, fire, and white pine blister
rust. There will probably also be a loss of site conditions
that support whitebark pine. To promote resilient whitebark
pine communities, managers may want to focus restoration
efforts on sites less likely to be affected by climate change
(i.e., refugia). A variety of management strategies can be
implemented to promote whitebark pine, including fire
management, planting at lower elevations, and removing
other dominant species (e.g., lodgepole pine, spruce, and
fir). Genetically selected seedlings can also be planted to
promote blister rust resistance.

Finally, managers recognized that stressors associated
with climate change cross boundaries, making it increas-
ingly important that agencies coordinate and work across
boundaries. Agencies can coordinate by aligning budgets
and priorities for programs of work, communicating about
projects adjacent to other lands, and working across bound-
aries to maintain roads, trails, and access that are likely to be
more frequently impacted by fire and flood events under a
changing climate.
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Discussion

Given the high uncertainties in predicting climate,
vegetation, and disturbance responses to increasing CO,,
we think that assessing vegetation change and vulner-
abilities is currently more of an educated guess based on
inconsistent and contradictory studies rather than a highly
confident evaluation of comprehensive scientific investiga-
tion. Many of the techniques used to predict tree species
response to climate change in the literature present only
one possible future out of seemingly unlimited possibilities.
These predictions would change if a new climate change
scenario were used, if new data were augmented with exist-
ing data, if new variables were included in the analysis, if
simulation parameters were modified, or if new algorithms
were included in existing models. Moreover, there are still
many unknowns in ecosystem science, and if we link those
unknowns to the unknowns in climate systems, these uncer-
tainties would certainly swamp any educated guesses that
we might have. Consequently, these projections and assess-
ments must be interpreted in the context of high uncertainty.

One important lesson that we learned while writing
this chapter is that climate change is only one of the many
challenges facing land managers, and some of these other
challenges might be more important than mitigating climate
change. We found that successfully mitigating ecosystem
impacts from past management actions, such as fire exclu-
sion and introductions of exotic species, will also mitigate
climate change impacts. Restoring fire-prone ecosystems
declining due to fire exclusion, for example, might success-
fully solve two issues: It would increase ecosystem health
and create resilient forests that could thrive under future
climate changes. These fire-dominated forests have already
experienced great variation in past climate and clearly have
broad amplitudes of resilience with respect to climate. In an-
other example, fostering greater rust-resistance in our native
five-needle pines may allow us to create forests that are less
vulnerable to changes in climate. There will be places in the
Northern Rockies where the primary challenge will be cli-
mate change impacts, such as drought at the lower treeline,
but overall, we think that the best approach is to integrate
climate change considerations into current management
actions rather than conducting management actions for the
sole purpose of climate change mitigation. Ecosystem res-
toration, as a prime example, could be the best approach for
preparing for climate change.

The main question then is: How do we restore ecosys-
tems in the Northern Rockies? Managers need reference
conditions at the stand and landscape scales to prioritize,
plan, design, and implement effective restoration activi-
ties. This becomes somewhat problematic when we need
that reference to include the trend and variability of future
climate. Considering the high uncertainty of future climate
and vegetation projections, and knowing the resilience of
fire-adapted species, we suggest that any conclusions about
the infeasibility of ecosystem restoration under changing
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climates are imprudent. It may be more prudent to wait
until simulation technology has improved to include cred-
ible pattern and process interactions with realistic regional
climate dynamics for the future so that we base decisions
about the restoration of ecosystems on better information.
But improving ecosystem models may take decades before
simulations can be used to predict species and landscape
response to climate change with reasonable accuracy. While
we wait, we lose valuable populations and rust-resistant
trees, and our options for restoration diminish greatly. Even
with climate change, restoration activities will probably be
appropriate considering the high genetic variation across
the range of forest species, which provides the foundation
for adaptation (Bower and Aitken 2006, 2008; Mahalovich
and Hipkins 2011; Rehfeldt et al. 1999). Therefore, we think
that the current emphasis on ecosystem restoration in the
Northern Rockies will lead to more-resilient ecosystems for
the future. Until we have realistic models and less uncertain
climate change projections, we desperately need a construct
to use as a reference for restoration. Using historical data to
guide future management actions may entail less uncertainty
than building new references based on uncertain climate
change projections. Therefore, we think that historical
ranges and variability may provide sufficient reference con-
ditions in the future.

We think that the concept of HRYV still has a valid place
in land management, at least for the near future. Landscape
models can be used to simulate fire regimes and their
interaction with climate and vegetation to create HRV time
series that can be used as reference conditions to assess,
plan, evaluate, design, and implement ecosystem restora-
tion treatments. HRV should be used only to guide land
management—not as a target on which to evaluate success
or failure. There are few measures of ecosystem health that
match the scale, scope, flexibility, and robustness of HRV
analysis. HRV might provide a useful, though not ideal, ref-
erence for land management over the next several decades
until simulation modeling advances to a level where models
can forecast both accurate climate and climate responses by
the ecosystems.

Conclusions

Climate change is one of many challenges facing land
managers, and some of these other challenges might be
more important than climate change. In addition, mitigating
past ecosystem damage (e.g., fire exclusion and nonnative
introductions) is a climate-smart practice. For example,
restoring fire-prone ecosystems can both improve ecosystem
function and create forests that will be resilient in a warmer
climate. Fire-prone forests have already withstood variation
in past climate and have broad amplitudes of resilience
with respect to climate. There will be places in the Northern
Rockies region where climate change will be the primary
challenge (e.g., drought at lower treeline), but integrating
climate change considerations into current management
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operations is preferable to a climate-centric management
strategy.

Multiresource monitoring will be critical for managing
ecosystems in the future, building on existing monitoring
systems but with additional elements to accommodate the
effects of climate change (Janowiak et al. 2014). Although
costly in terms of money and personnel, an extensive moni-
toring system will save money in the long run by evaluating
the effectiveness of adaptation tactics and providing a means
to adjust them. Without monitoring, it will be impossible
to know the magnitude and trend of climate effects on
vegetation, or if actions proposed in this document (see
section on adaptation strategies and tactics) are useful for
planning and management. Monitoring data can also be used
to provide inputs to calibrate and validate models. Models,
in turn, can be used to simulate emergent environmental
patterns, compare effects of potential treatments, identify
vulnerable landscapes or ecosystem components, and bridge
gaps between large-scale ecological processes and variables
measured in small areas and over short periods of time.
Therefore, any future land management planning will be
complete only if a plan for monitoring proposed actions is
included.
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Appendix 6—Vegetation Model Output, Vulnerability
Assessment Descriptions, and Adaptation Options for
Forest Vegetation in the Northern Rockies.

Appendix 6A—Dynamic Global Vegetation Model (MC2) Output for the Northern

Rockies.

The following figures show output from the MC2 dynamic global vegetation model for the Northern Rockies region,
including vegetation type distribution (figs. 6A.1-6A.4), carbon (6A.5, 6A.6), potential evapotranspiration (6A.7), and fire
rotation (6A.8). See Chapter 6 for further information on the MC2 model and model simulation details.

Figure 6A.1—Maps of MC2
vegetation type distributions
for three time spans (historical,
2030-2050, and 2080-2100)
and with and without fire
suppression. Vegetation types
are abbreviated as follows: B
= boreal; M = maritime; S =
subtropical; SA = subalpine;
T = temperate; and ENF =
evergreen needleleaf forest;
ENW = evergreen needleleaf
woodland; F = forest; MF =
mixed forest; MW = mixed
woodland; DBF = deciduous
broadleaf forest; and DBW
= deciduous broadleaf
woodland.

USDA Forest Service RMRS-GTR-374.
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Figure 6A.2—MC2 Vegetation type distributions as proportion of the landscape for each subregion,
where 2A = Western Rockies; 2B = Central Rockies; 2C = Eastern Rockies; 2D = Grassland; 2E =
Greater Yellowstone Area; and vegetation type acronyms are: ENF = evergreen needleleaf forest; ENW
= evergreen needleleaf woodland; F = forest; MF = mixed forest; MW = mixed woodland; DBF =
deciduous broadleaf forest; and DBW = deciduous broadleaf woodland.
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Figure 6A.3—Potential vegetation type distributions as proportion of the landscape for each subregion where vegetation types are
abbreviated as follows: Ponderosa pine-Douglas-fir = dry ponderosa pine and Douglas-fir forests; eastern grasslands = eastern
grasslands; lodgepole pine-aspen = lodgepole pine and aspen mixed conifer forests; mixed mesic = mixed mesic white pine, cedar,
hemlock, grand fir forests; montane shrubs = montane shrubs; Palouse = Palouse (western grassland); riparian = riparian; sagebrush
dominated = sagebrush-dominated systems; larch mixed conifer = western larch mixed conifer forests; whitebark pine-spruce-fir =
whitebark pine-spruce-fir forests; woodland = woodland; and exotics = exotics.
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Figure 6A.4—EXxisting vegetation type distributions as proportions of the landscape for each subregion, where vegetation types are
abbreviated as follows: Ponderosa pine-Douglas-fir = dry ponderosa pine and Douglas-fir forests; eastern grasslands = eastern
grasslands; lodgepole pine-aspen = lodgepole pine and aspen mixed conifer forests; mixed mesic = mixed mesic white pine, cedar,
hemlock, grand fir forests; montane shrubs = montane shrubs; Palouse = Palouse (western grassland); riparian = riparian; sagebrush
dominated = sagebrush-dominated systems; larch mixed conifer = western larch mixed conifer forests; whitebark pine-spruce-fir =
whitebark pine-spruce-fir forests; woodland = woodland; and exotics = exotics.
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Figure 6A.5—Maps of aboveground live carbon averaged across each of three time spans
(historical, 2030-2050, and 2080-2100) and with and without fire suppression, for the
A1B and A2 emission scenarios.
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Figure 6A.6—Maps of aboveground dead carbon averaged across each of three time

spans (historical, 2030-2050, and 2080-2100) and with and without fire suppression,
for the A1B and A2 emission scenarios.
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Figure 6A.7—Maps of potential evapotranspiration (PET) averaged across each of three
time spans (historical, 2020-2050, and 2070-2100) and with and without fire
suppression, for the ATB and A2 emission scenarios.
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Figure 6A.8—Maps of annual fire rotation averaged across each of three time spans (historical,
2020-2050, 2080-2100) and with and without fire suppression, for the A1B and A2 emission
scenarios.
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Appendix 6B—Climate Change Vulnerability Assessments and Ratings for Tree
Species, Forest Vegetation Types and Forest Resources of Concern.
The following tables describe climate change vulnerability assessments for tree species, forest vegetation types, and
forest resource concerns (table 6B.1), and risk assessment and vulnerability ratings for the same species, vegetation types,

and resources of concern (table 6B.2). See Chapter 6 for further discussion of climate change vulnerabilities for forest
vegetation.
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CHAPTER 6:

1es.

the Northern Rock

The following tables describe climate change sensitivities and adaptation strategies and tactics for forest vegetation,
developed in a series of workshops as a part of the Northern Rockies Adaptation Partnership. Tables are organized by
subregion within the Northern Rockies. See Chapter 6 for summary tables and discussion of adaptation options for forest

vegetation.

ionin

Appendix 6C—Adaptation Options for Forest Vegetat
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