Cataloging Information
Extreme Fire Behavior
Simulation Modeling
Fire Ecology
Fire & Bark Beetles
Quantifying the effects of mountain pine beetle (MPB)-caused tree mortality on potential crown fire hazard has been challenging partly because of limitations in current operational fire behavior models. Such models are not capable of accounting for fuel heterogeneity resulting from an outbreak. Further, the coupled interactions between fuel, fire, and atmosphere are not modeled. To overcome these limitations, we used the Wildland-Urban Interface Fire Dynamics Simulator (WFDS) to investigate the influences of tree spatial arrangement and magnitude of MPB-caused tree mortality on simulated fire hazard. Field-collected, tree-level data from 11 sites were used to populate WFDS simulation domains representing a range of lodgepole pine forest structures for the post-outbreak period of time when dead needles are still present in the tree crowns. We found increases in the amount of crown fuel consumption and the intensity of crown fires as the percentage of MPB-caused tree mortality increased. In addition, we found complex interactions between the level of mortality, stand structure, and spatial arrangement of trees. These results suggest that pre-outbreak forest structure and percent tree mortality influence crown fire behavior while dead needles are in the crown, and that the effect varies with spatial heterogeneity among trees.
Citation
Access this Document
Treesearch
publication access with no paywall
Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.