Cataloging Information
Weather
Wildfire can exert considerable influence on many watershed processes, including the partitioning of precipitation by forest canopies. Despite general acknowledgement that canopy interception is reduced following wildfire, effects on net rainfall and snow accumulation have not been quantified. The objectives of this study were to document net rainfall and snow water equivalent (SWE) in burned and unburned (reference) forest stands over a 10-year period to characterise the effects of severe wildfire on net precipitation in the Canadian Rocky Mountains. Differences in summer (June-September) rainfall between burned and reference stands suggest that wildfire reduced rainfall interception by 65%, resulting in a 48% increase in net rainfall from 2006 to 2008. This represented an average annual increase in net rainfall of 122 mm (36%) for 10 years after the fire. Similarly, a burned stand had 152 mm (78%) higher mean annual peak SWE than a paired reference stand. Collectively, burned stands had 274 mm (191-344 mm; 51%) more mean annual net precipitation for the first decade after fire. These results suggest that increases in net precipitation are likely following wildfire in subalpine forests and that, owing to the slow growth of these forests, post-fire changes may alter precipitation-runoff relationships for many years.
Citation
Access this Document
Treesearch
publication access with no paywall
Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.