Cataloging Information
Simulation Modeling
One of the most ubiquitous cause of worldwide deforestation and devastation of wildlife is fire. To control fire and reach the forest area in time is not always possible. Consequently, the level of destruction is often high. Therefore, predicting fires well in time and taking immediate action is of utmost importance. However, traditional fire prediction approaches often fail to detect fire in time. Therefore, a more reliable approach like the Internet of Things (IoT) needs to be adopted. IoT sensors can not only observe the real-time conditions of an area, but it can also predict fire when combined with Machine learning. This paper provides an insight into the use of Machine Learning models towards the occurrence of forest fires. In this context, eight Machine Learning algorithms: Boosted Decision Trees, Decision Forest Classifier, Decision Jungle Classifier, Averaged Perceptron, 2-Class Bayes Point Machine, Local Deep Support Vector Machine (SVM), Logistic Regression and Binary Neural Network model have been implemented. Results suggest that the Boosted decision tree model with the Area Under Curve (AUC) value of 0.78 is the most suitable candidate for a fire prediction model. Based on the results, we propose a novel IoT-based smart Fire prediction system that would consider both meteorological data and images for early fire prediction.
Citation
Access this Document
Treesearch
publication access with no paywall
Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.