Skip to main content
Author(s):
Haiganoush K. Preisler, David R. Brillinger, Robert E. Burgan, John W. Benoit
Year Published:

Cataloging Information

Topic(s):
Fire Behavior
Data Evaluation or Data Analysis for Fire Modeling
Risk
Risk assessment
Strategic Risk

NRFSN number: 12709
FRAMES RCS number: 8888
Record updated:

We present a probability-based model for estimating fire risk. Risk is defined using three probabilities: the probability of fire occurrence; the conditional probability of a large fire given ignition; and the unconditional probability of a large fire. The model is based on grouped data at the 1 km2-day cell level. We fit a spatially and temporally explicit non-parametric logistic regression to the grouped data. The probability framework is particularly useful for assessing the utility of explanatory variables, such as fire weather and danger indices for predicting fire risk. The model may also be used to produce maps of predicted probabilities and to estimate the total number of expected fires, or large fires, in a given region and time period. As an example we use historic data from the State of Oregon to study the significance and the forms of relationships between some of the commonly used weather and danger variables on the probabilities of fire. We also produce maps of predicted probabilities for the State of Oregon. Graphs of monthly total numbers of fires are also produced for a small region in Oregon, as an example, and expected numbers are compared to actual numbers of fires for the period 1989-1996. The fits appear to be reasonable; however, the standard errors are large indicating the need for additional weather or topographic variables.

Citation

Preisler, Haiganoush K.; Brillinger, David R.; Burgan, Robert E.; Benoit, J.W. 2004. Probability based models for estimation of wildfire risk. International Journal of Wildland Fire 13(2): 133-142.

Access this Document

Treesearch

publication access with no paywall

Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.