Skip to main content
Author(s):
Shawn M. Crimmins, Solomon Z. Dobrowski, Jonathan A. Greenberg, John T. Abatzoglou, Alison R. Mynsberge
Year Published:

Cataloging Information

Topic(s):
Fire Behavior
Weather
Fire & Climate

NRFSN number: 15690
Record updated:

Uphill shifts of species’ distributions in response to historical warming are well documented, which leads to widespread expectations of continued uphill shifts under future warming. Conversely, downhill shifts are often considered anomalous and unrelated to climate change. By comparing the altitudinal distributions of 64 plant species between the 1930s and the present day within California, we show that climate changes have resulted in a significant downward shift in species’ optimum elevations. This downhill shift is counter to what would be expected given 20th-century warming but is readily explained by species’ niche tracking of regional changes in climatic water balance rather than temperature. Similar downhill shifts can be expected to occur where future climate change scenarios project increases in water availability that outpace evaporative demand.

Citation

Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR. 2011. Changes in climatic water balance drive downhill shifts in plant species optimum elevations. Science 331 (6015), p. 324-327. DOI 10.1126/science.1199040.

Access this Document

Treesearch

publication access with no paywall

Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.