Skip to main content
Author(s):
Petter Nyman, Gary J. Sheridan, Patrick N. J. Lane
Year Published:

Cataloging Information

Topic(s):
Fire Effects
Ecological - Second Order
Soils
Water

NRFSN number: 15761
Record updated:

Erosion, flash floods and debris flows are hydro-geomorphic processes that intensify due to catchment disturbance by wildland fire. Predictive models of these processes are used by land managers to quantify rehabilitation effectiveness, prioritize resources and evaluate trade-offs between different management strategies. Predictions can be difficult to make, however, because of heterogeneous landscapes, stochastic rainfall, and the transient and variable fire effects. This paper reviews hydro-geomorphic response models for burned areas and explores how modelling approaches and sources of uncertainty change depending on the focus question (or purpose) and the associated spatial-temporal scale of the model domain. The review shows that current models focus primarily on predicting catchment responses during a recovery period (within-burn timescales), a relatively short temporal window during which rainfall is an important source of uncertainty. At longer (between-burn) timescales, the fire regime itself, and not just fire severity, becomes a variable component of the model. At this temporal scale, the catchment processes respond to variations in the frequency and severity with which a landscape is conditioned (or ‘primed’) by fire and rain storms. Conditioning is a stochastic process that is determined by the spatial-temporal overlap of fire disturbance and rain storms. The translation of overlaps to hydro-geomorphic responses is a function of intrinsic catchment attributes (e.g. permeability, slope and catchment area). Capturing the stochastic interplay between fire and rain storms is important when land-management questions shift towards the issues of climate change and landscape-scale interventions such as prescribed burning. The review therefore includes a discussion on fire and rainfall regimes as variables which drive decadal and regional variability in hydro-geomorphic processes.

Citation

Nyman P, Sheridan GJ, Lane PNJ. 2013. Hydro-geomorphic response models for burned areas and their applications in land management. Progress in Physical Geography 37(6) 787–812. DOI: 10.1177/0309133313508802.

Access this Document

Treesearch

publication access with no paywall

Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.