Cataloging Information
Management Approaches
The last 50 years or so have seen a steady increase in the rate of destructive wildfires across the world, partly as a result of climate change and partly as a result of encroachment of human settlement on fire-based ecosystems (Russell et al. 2004; Westerling et al. 2006). Years of active fire suppression in such areas has inevitably led to the build-up of hazardous fuel loads, creating ideal conditions for destructive wildfires (Johnson et al. 2001). Recently, serious wildfires have occurred in Australia, southeast Asia and the Mediterranean, as well as those occurring in the USA in California, Montana, Idaho and Alaska. Current thinking on fire management is very much focused on re-instating natural fire regimes and allowing fire, as nearly as possible, to function in its natural ecological role (Miller 2006), thereby reducing the occurrence of destructive fires. Mechanical fuel treatments (e.g. thinning) and prescribed burning are being used to reduce fuel loads to near natural conditions, after which natural fire regimes can be allowed to operate. There are two main types of thinning that either remove selected trees to create a more widely spaced forest consisting of trees of different sizes/ages or remove all smaller trees and brush within the understory to leave a more uniform forest of more widely spaced older trees. Prescribed burning uses small managed fires, rather than mechanical means, to achieve the latter. This is a long and involved process and often has the potential to create conflict between the different management regimes associated with adjacent lands and between the different inhabitants and stakeholders affected in the short to medium term. This requires a high degree of collaboration and participatory planning if acceptable fuel reduction strategies and management plans are to be developed.