Cataloging Information
Fuels
Fuel Descriptions
Fire resistance traits drive tree species composition in surface‐fire ecosystems, but how they covary at different scales of variation and with the environment is not well documented. We assessed the covariation of bark thickness (BT), tree height, and crown base‐to‐height ratio across Alpine forests, after accounting for the effects of tree diameter and competition for light on individual trait variation. Traits consistently correlated across individuals and communities, although the variance of BT mainly occurred among species, whereas crown elevation traits varied mainly within species. Aridity, temperature, and competition contributed to explain the variation of fire resistance traits among and within species, driving a trade‐off between fire resistance and the ability to compete for light. Thick‐barked species (fire‐tolerant) that self‐prune their lower branches (flame‐avoiders) dominated the most fire‐prone and flammable communities in sub‐Mediterranean southern Alps, whereas thin‐barked tree species that grow tall (competition for light) dominated the least fire‐prone communities in the northern Alps. Our findings suggest a long‐term interaction between mountain tree species and fire regime. Higher allocation to trunk elongation occurs in moist and shade environments, while higher allocation to thicken the bark and distancing the crown base from surface fuels occurs in open‐canopy, dry forests where fire spreads with higher intensity.
Citation
Access this Document
Treesearch
publication access with no paywall
Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.