Cataloging Information
Mapping
Burn severity is commonly assessed using Burn Ratios and field measurements to provide land managers with estimates of the degree of burning in an area. However, less commonly studied is the ability of spectral indices and Burn Ratios to estimate field-measured fire effects. Past research has shown low correlations between fire effects and Landsat-derived Burn Ratios, but with the launch of the Sentinel-2 constellation, more spectral bands with finer spatial resolutions have become available. This paper explores the use of several red-edge-based indices and Burn Ratios alongside more ‘traditional’ spectral indices for predicting fire effects, measured from the Maple and Berry fires in Wyoming, USA. The fire effects include ash depth, char depth, post-fire dead lodgepole pine (Pinus contorta; PICO) density/stumps, mean basal diameter, cone density on dead post-fire trees, coarse wood percent cover/volume/mass, percent cover of ghost logs and initial regeneration of post-fire PICO/aspen density. All-possible-models regression was used to determine the best models for estimating each fire effect. Models with satisfactory R2 values were constructed for post-fire dead PICO stumps (0.663), coarse wood percent cover (0.691), coarse wood volume (0.833), coarse wood mass (0.838), ash depth (0.636) and percent cover of ghost logs (0.717). Red-edge-based indices were included in all of the satisfactory models, which shows that the red-edge bands may be useful for measuring fire effects.
Citation
Access this Document
Treesearch
publication access with no paywall
Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.