Skip to main content
Author(s):
Shaorun Lin, Chengze Li, Mackenzie Conkling, Xinyan Huang, Steve Quarles, Michael J. Gollner
Year Published:

Cataloging Information

Topic(s):
Fire Behavior
Fuel Treatments & Effects

NRFSN number: 27127
Record updated:

Spotting ignition by firebrands is a significant fire spread pathway at the wildland-urban interface (WUI), where mulch products are commonly used as landscaping materials. Mulch is typically organic in nature, thus it may be easily ignited into a smoldering mode by firebrands and subsequently transition to flaming, leading to direct flame contact and radiant heat exposure to siding materials of adjacent structures. This work quantified the thresholds of smoldering ignition of four common types of commercially available mulch (black mulch (BM), forest floor (FF), redwood (RW), and fir bark (FB)) exposed to heating by smoldering firebrand piles, and their propensity for smoldering-to-flaming transition under external winds (up to 1.4 m/s). We found that there was a minimum mass of firebrand pile to achieve smoldering ignition of mulch (e.g., ∼0.1 g for FF). Beyond this minimum mass, the required wind speed to trigger smoldering ignition generally decreased as the mass of the firebrand pile increased, agreeing well with theoretical analysis. After smoldering ignition, smoldering-to-flaming transition could be observed when the wind speed exceeded a critical value (e.g., ∼1 m/s for FF), which was not affected by the initial spotting process. To achieve smoldering-to-flaming transition, the glowing mulch had to reach a critical temperature of around 850 °C. Mulch samples with larger particle sizes were more likely to smolder and transition to flaming, due to increased oxygen supply through larger inter-particle pores and channels and better firebrand accumulation due to a more crevice-like geometry on the fuel surface. This work advances the fundamental understanding of the ignition and burning behavior of landscaping mulches, and thus contributes to the prevention of extreme WUI fire events.


  •  

Citation

Lin S, Li C, Conkling M, Huang X, Quarles S, and Gollner MJ. 2024. Smoldering ignition and transition to flaming in wooden mulch beds exposed to firebrands under wind. Fire Safety Journal 148, September 2024, article 104226. https://doi.org/10.1016/j.firesaf.2024.104226

Access this Document

Treesearch

publication access with no paywall

Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.