Skip to main content
Author(s):
Leonardo N. Ferreira, Didier A. Vega-Oliveros, Liang Zhao, Manoel F. Cardoso, Elbert E.N. Macau
Year Published:

Cataloging Information

Topic(s):
Fire Behavior
Fire Prediction
Simulation Modeling
Fire Regime
Fire Intensity / Burn Severity
Fire & Climate

NRFSN number: 20694
FRAMES RCS number: 58960
Record updated:

Fire activity has a huge impact on human lives. Different models have been proposed to predict fire activity, which can be classified into global and regional ones. Global fire models focus on longer timescale simulations and can be very complex. Regional fire models concentrate on seasonal forecasting but usually require inputs that are not available in many places. Motivated by the possibility of having a simple, fast, and general model, we propose a seasonal fire prediction methodology based on time series forecasting methods. It consists of dividing the studied area into grid cells and extracting time series of fire counts to fit the forecasting models. We apply these models to estimate the fire season severity (FSS) from each cell, here defined as the sum of the fire counts detected in a season. Experimental results using a global fire detection data set show that the proposed approach can predict FSS with a relatively low error in many regions. The proposed approach is reasonably fast and can be applied on a global scale.

Citation

Ferreira, Leonardo N.; Vega-Oliveros, Didier A.; Zhao, Liang; Cardoso, Manoel F.; Macau, Elbert E.N. 2020. Global fire season severity analysis and forecasting. Computers & Geosciences 134:104339. https://doi.org/10.1016/j.cageo.2019.104339

Access this Document

Treesearch

publication access with no paywall

Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.